Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_tensorrt_softmax
commit
29ad9794bb
@ -0,0 +1,35 @@
|
||||
if(NOT WITH_GPU)
|
||||
return()
|
||||
endif()
|
||||
|
||||
include(ExternalProject)
|
||||
|
||||
set(CUB_SOURCE_DIR ${THIRD_PARTY_PATH}/cub)
|
||||
set(CUB_INCLUDE_DIR ${CUB_SOURCE_DIR}/src/extern_cub)
|
||||
|
||||
include_directories(${CUB_INCLUDE_DIR})
|
||||
|
||||
ExternalProject_Add(
|
||||
extern_cub
|
||||
${EXTERNAL_PROJECT_LOG_ARGS}
|
||||
GIT_REPOSITORY "https://github.com/NVlabs/cub.git"
|
||||
GIT_TAG "v1.8.0"
|
||||
PREFIX ${CUB_SOURCE_DIR}
|
||||
UPDATE_COMMAND ""
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND ""
|
||||
INSTALL_COMMAND ""
|
||||
TEST_COMMAND ""
|
||||
)
|
||||
|
||||
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
|
||||
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cub_dummy.c)
|
||||
file(WRITE ${dummyfile} "const char *dummy = \"${dummyfile}\";")
|
||||
add_library(cub STATIC ${dummyfile})
|
||||
else()
|
||||
add_library(cub INTERFACE)
|
||||
endif()
|
||||
|
||||
add_dependencies(cub extern_cub)
|
||||
|
||||
LIST(APPEND externl_project_dependencies cub)
|
@ -0,0 +1,102 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This module privides a memory usage calculate function for user.
|
||||
The purpose of this API is to allow users to estimate memory usage of
|
||||
a program under a special batch size, then user can set appropriate
|
||||
batch size to fully utilize a GPU.
|
||||
|
||||
This API is still under active development and may change drastically.
|
||||
"""
|
||||
|
||||
from .. import core
|
||||
from ..framework import Program, Variable
|
||||
|
||||
__all__ = ['memory_usage']
|
||||
|
||||
dtype_to_size = {
|
||||
core.VarDesc.VarType.FP16: 2,
|
||||
core.VarDesc.VarType.FP32: 4,
|
||||
core.VarDesc.VarType.FP64: 8,
|
||||
core.VarDesc.VarType.INT16: 2,
|
||||
core.VarDesc.VarType.INT32: 4,
|
||||
core.VarDesc.VarType.INT64: 8,
|
||||
core.VarDesc.VarType.BOOL: 1,
|
||||
core.VarDesc.VarType.UINT8: 1,
|
||||
}
|
||||
|
||||
DEBUG = False
|
||||
|
||||
|
||||
def memory_usage(program, batch_size):
|
||||
"""
|
||||
Get the estimate memory usage of program with input batch size.
|
||||
|
||||
Args:
|
||||
program(Program): The current Program.
|
||||
batch_size(int): The current input data batch_size.
|
||||
|
||||
Returns:
|
||||
min_total_memory(float): the estimate memory usage lower bound.
|
||||
max_total_memory(float): the estimate memory usage upper bound.
|
||||
unit_str(string): the unit of estimate usage result.
|
||||
|
||||
Examples:
|
||||
|
||||
>>> import paddle.fluid as fluid
|
||||
>>> lower_usage, upper_usage, unit = fluid.contrib.memory_usage(
|
||||
fluid.default_main_program(), batch_size=10)
|
||||
>>> print "memory usage is about %.3f - %.3f %s" % \
|
||||
(lower_usage, upper_usage, unit)
|
||||
|
||||
"""
|
||||
|
||||
# Parameters check
|
||||
if not isinstance(program, Program):
|
||||
raise TypeError(
|
||||
"Calculating Memory Usage requires Program as its Parameter."
|
||||
"But you passed in %s" % (type(prgram)))
|
||||
if batch_size <= 0:
|
||||
raise ValueError("The batch size need to be positive.")
|
||||
|
||||
# Get the var_name list of first block and calculate
|
||||
total_memory = 0.0
|
||||
for var in program.global_block().vars.itervalues():
|
||||
data_count = 1
|
||||
for x in var.shape:
|
||||
if x == -1:
|
||||
data_count *= batch_size
|
||||
else:
|
||||
data_count *= x
|
||||
var_memory = data_count * dtype_to_size[var.dtype]
|
||||
if DEBUG:
|
||||
print "%s memory usage: %d" % (var.name, var_memory)
|
||||
total_memory += var_memory
|
||||
if DEBUG:
|
||||
print "total memory usage: %.2f" % (total_memory)
|
||||
|
||||
# Convert appropriate unit
|
||||
unit_str = "B"
|
||||
if total_memory > 1024:
|
||||
total_memory /= 1024
|
||||
unit_str = "KB"
|
||||
if total_memory > 1024:
|
||||
total_memory /= 1024
|
||||
unit_str = "MB"
|
||||
|
||||
# Append extra memory consumption (5% - 10%)
|
||||
min_total_memory = total_memory * 1.05
|
||||
max_total_memory = total_memory * 1.1
|
||||
|
||||
return min_total_memory, max_total_memory, unit_str
|
@ -0,0 +1,69 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import contextlib
|
||||
import unittest
|
||||
|
||||
|
||||
def train_simulator(test_batch_size=10):
|
||||
if test_batch_size <= 0:
|
||||
raise ValueError("batch_size should be a positive integeral value, "
|
||||
"but got batch_size={}".format(test_batch_size))
|
||||
|
||||
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
||||
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
||||
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
||||
|
||||
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
|
||||
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
||||
sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
# Calculate memory usage in current network config
|
||||
lower_usage, upper_usage, unit = fluid.contrib.memory_usage(
|
||||
fluid.default_main_program(), batch_size=test_batch_size)
|
||||
|
||||
print("memory usage is about %.3f - %.3f %s" %
|
||||
(lower_usage, upper_usage, unit))
|
||||
|
||||
|
||||
class TestMemoryUsage(unittest.TestCase):
|
||||
def test_with_unit_B(self):
|
||||
with self.program_scope_guard():
|
||||
train_simulator()
|
||||
|
||||
def test_with_unit_KB(self):
|
||||
with self.program_scope_guard():
|
||||
train_simulator(test_batch_size=1000)
|
||||
|
||||
def test_with_unit_MB(self):
|
||||
with self.program_scope_guard():
|
||||
train_simulator(test_batch_size=100000)
|
||||
|
||||
@contextlib.contextmanager
|
||||
def program_scope_guard(self):
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
scope = fluid.core.Scope()
|
||||
with fluid.scope_guard(scope):
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
yield
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue