Merge pull request #7928 from guoshengCS/add-weight-normalization
Add weight normalization wrapper.emailweixu-patch-1
commit
29b683922a
@ -0,0 +1,121 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy
|
||||
import collections
|
||||
import paddle.v2.fluid as fluid
|
||||
import paddle.v2.fluid.core as core
|
||||
from paddle.v2.fluid.initializer import ConstantInitializer
|
||||
from paddle.v2.fluid.param_attr import WeightNormParamAttr
|
||||
|
||||
|
||||
class TestWeightNormalization(unittest.TestCase):
|
||||
batch_size = 3
|
||||
hidden_size = 5
|
||||
data_desc = (['x', [10], 0], )
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.set_program()
|
||||
|
||||
@classmethod
|
||||
def set_program(cls):
|
||||
data = fluid.layers.data(
|
||||
name=cls.data_desc[0][0], shape=cls.data_desc[0][1])
|
||||
out = fluid.layers.fc(input=data,
|
||||
size=cls.hidden_size,
|
||||
param_attr=WeightNormParamAttr(
|
||||
dim=None,
|
||||
name='weight_norm_param',
|
||||
initializer=ConstantInitializer(1.0)),
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
loss = fluid.layers.reduce_sum(out)
|
||||
fluid.backward.append_backward(loss=loss)
|
||||
cls.fetch_list = [
|
||||
'weight_norm_param_g', 'weight_norm_param_v',
|
||||
'weight_norm_param_g@GRAD'
|
||||
]
|
||||
|
||||
def run_program(self):
|
||||
outputs = []
|
||||
places = [core.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(core.CUDAPlace(0))
|
||||
for place in places:
|
||||
self.set_inputs(place)
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
output = exe.run(fluid.default_main_program(),
|
||||
feed=self.inputs,
|
||||
fetch_list=self.fetch_list,
|
||||
return_numpy=False)
|
||||
outputs.append(output)
|
||||
self.actual_outputs = outputs
|
||||
|
||||
def set_data(self):
|
||||
self.data = collections.OrderedDict()
|
||||
for desc in self.data_desc:
|
||||
data_name = desc[0]
|
||||
data_shape = desc[1]
|
||||
data_lod_level = desc[2]
|
||||
data_lod = []
|
||||
for i in range(data_lod_level):
|
||||
lod_level_i = numpy.random.randint(
|
||||
low=1,
|
||||
high=5,
|
||||
size=self.batch_size if i == 0 else lod_level_i[-1])
|
||||
lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist()
|
||||
data_lod.append(lod_level_i)
|
||||
data_value = numpy.random.random(
|
||||
size=[data_lod[-1][-1] if data_lod else self.batch_size
|
||||
] + data_shape).astype('float32')
|
||||
self.data[data_name] = (data_value, data_lod)
|
||||
|
||||
def set_inputs(self, place):
|
||||
self.inputs = {}
|
||||
for desc in self.data_desc:
|
||||
tensor = fluid.Tensor()
|
||||
tensor.set(self.data[desc[0]][0], place)
|
||||
if self.data[desc[0]][1]:
|
||||
tensor.set_lod(self.data[desc[0]][1])
|
||||
self.inputs[desc[0]] = tensor
|
||||
|
||||
def weight_normalize(self):
|
||||
v = numpy.ones((self.data[self.data_desc[0][0]][0].shape[-1],
|
||||
self.hidden_size))
|
||||
g = numpy.linalg.norm(v, axis=None, keepdims=True)
|
||||
w = g * v / numpy.linalg.norm(v, axis=None, keepdims=True)
|
||||
x = self.data[self.data_desc[0][0]][0]
|
||||
out = numpy.dot(x, w)
|
||||
g_grad = (numpy.dot(x.T, numpy.ones_like(out)) * (v / numpy.linalg.norm(
|
||||
v, axis=None, keepdims=True))).sum(axis=None, keepdims=True)
|
||||
return g, v, g_grad
|
||||
|
||||
def test_weight_normalization(self):
|
||||
self.set_data()
|
||||
self.run_program()
|
||||
expect_output = self.weight_normalize()
|
||||
for actual_output in self.actual_outputs:
|
||||
[
|
||||
self.assertTrue(
|
||||
numpy.allclose(
|
||||
numpy.array(actual), expect, atol=0.001))
|
||||
for expect, actual in zip(expect_output, actual_output)
|
||||
]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue