parent
3a3f28f99b
commit
29f5a93b5f
@ -0,0 +1,181 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/inference/analysis/analyzer.h"
|
||||
|
||||
#include <google/protobuf/text_format.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include <thread> // NOLINT
|
||||
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
|
||||
#include "paddle/fluid/framework/ir/pass.h"
|
||||
#include "paddle/fluid/inference/analysis/ut_helper.h"
|
||||
#include "paddle/fluid/inference/api/analysis_predictor.h"
|
||||
#include "paddle/fluid/inference/api/helper.h"
|
||||
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
||||
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
|
||||
|
||||
DEFINE_string(infer_model, "", "model path");
|
||||
DEFINE_string(infer_data, "", "data path");
|
||||
DEFINE_int32(batch_size, 1, "batch size.");
|
||||
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
|
||||
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
|
||||
using namespace framework; // NOLINT
|
||||
|
||||
struct DataRecord {
|
||||
std::vector<std::vector<std::vector<float>>> link_step_data_all;
|
||||
std::vector<size_t> lod;
|
||||
std::vector<std::vector<float>> rnn_link_data;
|
||||
std::vector<float> result_data;
|
||||
size_t batch_iter{0};
|
||||
size_t batch_size{1};
|
||||
DataRecord() = default;
|
||||
explicit DataRecord(const std::string &path, int batch_size = 1)
|
||||
: batch_size(batch_size) {
|
||||
Load(path);
|
||||
}
|
||||
DataRecord NextBatch() {
|
||||
DataRecord data;
|
||||
size_t batch_end = batch_iter + batch_size;
|
||||
// NOTE skip the final batch, if no enough data is provided.
|
||||
if (batch_end <= link_step_data_all.size()) {
|
||||
data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
|
||||
link_step_data_all.begin() + batch_end);
|
||||
// Prepare LoDs
|
||||
data.lod.push_back(0);
|
||||
CHECK(!data.link_step_data_all.empty()) << "empty";
|
||||
for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
|
||||
for (const auto &d : data.link_step_data_all[j]) {
|
||||
data.rnn_link_data.push_back(d);
|
||||
// calculate lod
|
||||
data.lod.push_back(data.lod.back() + 11);
|
||||
}
|
||||
}
|
||||
}
|
||||
batch_iter += batch_size;
|
||||
return data;
|
||||
}
|
||||
void Load(const std::string &path) {
|
||||
std::ifstream file(path);
|
||||
std::string line;
|
||||
int num_lines = 0;
|
||||
while (std::getline(file, line)) {
|
||||
num_lines++;
|
||||
std::vector<std::string> data;
|
||||
split(line, ':', &data);
|
||||
if (num_lines % 2) { // feature
|
||||
std::vector<std::string> feature_data;
|
||||
split(data[1], ' ', &feature_data);
|
||||
std::vector<std::vector<float>> link_step_data;
|
||||
int feature_count = 1;
|
||||
std::vector<float> feature;
|
||||
for (auto &step_data : feature_data) {
|
||||
std::vector<float> tmp;
|
||||
split_to_float(step_data, ',', &tmp);
|
||||
feature.insert(feature.end(), tmp.begin(), tmp.end());
|
||||
if (feature_count % 11 == 0) { // each sample has 11 features
|
||||
link_step_data.push_back(feature);
|
||||
feature.clear();
|
||||
}
|
||||
feature_count++;
|
||||
}
|
||||
link_step_data_all.push_back(std::move(link_step_data));
|
||||
} else { // result
|
||||
std::vector<float> tmp;
|
||||
split_to_float(data[1], ',', &tmp);
|
||||
result_data.insert(result_data.end(), tmp.begin(), tmp.end());
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
||||
int batch_size) {
|
||||
PaddleTensor feed_tensor;
|
||||
feed_tensor.name = "feed";
|
||||
auto one_batch = data->NextBatch();
|
||||
int token_size = one_batch.rnn_link_data.size();
|
||||
// each token has 11 features, each feature's dim is 54.
|
||||
std::vector<int> rnn_link_data_shape({token_size * 11, 54});
|
||||
feed_tensor.shape = rnn_link_data_shape;
|
||||
feed_tensor.lod.assign({one_batch.lod});
|
||||
feed_tensor.dtype = PaddleDType::FLOAT32;
|
||||
TensorAssignData<float>(&feed_tensor, one_batch.rnn_link_data);
|
||||
// Set inputs.
|
||||
input_slots->assign({feed_tensor});
|
||||
}
|
||||
|
||||
void CompareResult(const std::vector<PaddleTensor> &outputs,
|
||||
const std::vector<float> &base_result) {
|
||||
PADDLE_ENFORCE_GT(outputs.size(), 0);
|
||||
for (size_t i = 0; i < outputs.size(); i++) {
|
||||
auto &out = outputs[i];
|
||||
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
||||
[](int a, int b) { return a * b; });
|
||||
PADDLE_ENFORCE_GT(size, 0);
|
||||
float *data = static_cast<float *>(out.data.data());
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
EXPECT_NEAR(data[i], base_result[i], 1e-3);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Test with a really complicate model.
|
||||
void TestRNN2Prediction() {
|
||||
AnalysisConfig config;
|
||||
config.prog_file = FLAGS_infer_model + "/__model__";
|
||||
config.param_file = FLAGS_infer_model + "/param";
|
||||
config.use_gpu = false;
|
||||
config.device = 0;
|
||||
config.specify_input_name = true;
|
||||
config.enable_ir_optim = true;
|
||||
PADDLE_ENFORCE(config.ir_mode ==
|
||||
AnalysisConfig::IrPassMode::kExclude); // default
|
||||
|
||||
int batch_size = FLAGS_batch_size;
|
||||
int num_times = FLAGS_repeat;
|
||||
|
||||
auto base_predictor =
|
||||
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
||||
auto predictor =
|
||||
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
|
||||
config);
|
||||
std::vector<PaddleTensor> input_slots;
|
||||
DataRecord data(FLAGS_infer_data, batch_size);
|
||||
PrepareInputs(&input_slots, &data, batch_size);
|
||||
std::vector<PaddleTensor> outputs, base_outputs;
|
||||
|
||||
Timer timer1;
|
||||
timer1.tic();
|
||||
for (int i = 0; i < num_times; i++) {
|
||||
base_predictor->Run(input_slots, &base_outputs);
|
||||
}
|
||||
PrintTime(batch_size, num_times, 1, 0, timer1.toc() / num_times);
|
||||
|
||||
Timer timer2;
|
||||
timer2.tic();
|
||||
for (int i = 0; i < num_times; i++) {
|
||||
predictor->Run(input_slots, &outputs);
|
||||
}
|
||||
PrintTime(batch_size, num_times, 1, 0, timer2.toc() / num_times);
|
||||
|
||||
CompareResult(base_outputs, data.result_data);
|
||||
CompareResult(outputs, data.result_data);
|
||||
}
|
||||
|
||||
TEST(Analyzer, rnn2) { TestRNN2Prediction(); }
|
||||
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
Loading…
Reference in new issue