Merge branch 'Pdv' into ckpt_new_api

guochaorong-patch-1
tangwei12 7 years ago
commit 2bd7fe5add

@ -103,6 +103,11 @@ if(ANDROID OR IOS)
add_definitions(-DPADDLE_MOBILE_INFERENCE)
endif()
if (APPLE OR WIN32)
set(WITH_MKL OFF CACHE STRING
"Disable MKL for building on mac and windows" FORCE)
endif()
set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING
"A path setting third party libraries download & build directories.")

@ -7,7 +7,17 @@ set(ANAKIN_INSTALL_DIR "${THIRD_PARTY_PATH}/install/anakin" CACHE PATH
set(ANAKIN_INCLUDE "${ANAKIN_INSTALL_DIR}" CACHE STRING "root of Anakin header files")
set(ANAKIN_LIBRARY "${ANAKIN_INSTALL_DIR}" CACHE STRING "path of Anakin library")
set(ANAKIN_COMPILE_EXTRA_FLAGS -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp)
set(ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-error=unused-variable -Wno-unused-variable
-Wno-error=format-extra-args -Wno-format-extra-args
-Wno-error=comment -Wno-comment
-Wno-error=format -Wno-format
-Wno-error=switch -Wno-switch
-Wno-error=return-type -Wno-return-type
-Wno-error=non-virtual-dtor -Wno-non-virtual-dtor
-Wno-sign-compare
-Wno-reorder
-Wno-error=cpp)
set(ANAKIN_LIBRARY_URL "https://github.com/pangge/Anakin/releases/download/3.0/anakin_release_simple.tar.gz")

@ -50,6 +50,7 @@ ExternalProject_Add(
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_IN_SOURCE 1
PATCH_COMMAND git apply ${PADDLE_SOURCE_DIR}/patches/grpc/fix_too_early_destory.patch
# NOTE(yuyang18):
# Disable -Werror, otherwise the compile will fail in MacOS.
# It seems that we cannot configure that by make command.

@ -1,16 +1,21 @@
# Get the latest git tag.
set(PADDLE_VERSION $ENV{PADDLE_VERSION})
set(tmp_version "HEAD")
set(TAG_VERSION_REGEX "[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?")
set(COMMIT_VERSION_REGEX "[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+[0-9a-f]+")
while ("${PADDLE_VERSION}" STREQUAL "")
execute_process(
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version}
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 --always ${tmp_version}
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}
OUTPUT_VARIABLE GIT_TAG_NAME
RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if (NOT ${GIT_RESULT})
# Check the tag is a correct version
if (${GIT_TAG_NAME} MATCHES "v[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?")
if (${GIT_TAG_NAME} MATCHES "${COMMIT_VERSION_REGEX}")
# if no tag was found, set PADDLE_VERSION to latest
set(PADDLE_VERSION "latest")
elseif (${GIT_TAG_NAME} MATCHES "v${TAG_VERSION_REGEX}")
string(REPLACE "v" "" PADDLE_VERSION ${GIT_TAG_NAME})
else() # otherwise, get the previous git tag name.
set(tmp_version "${GIT_TAG_NAME}~1")

@ -0,0 +1,110 @@
Fixed-point quantization uses lower bits, for example, 2-bit, 3-bit or 8-bit fixed point to represent weights and activations, which usually are in singe-precision float-point with 32 bits. The fixed-point representation has advantages in reducing memory bandwidth, lowering power consumption and computational resources as well as the model storage requirements. It is especially important for the inference in embedded-device deployment.
According to some experiments, the apporach to quantize the model trained in float point directly works effectively on the large models, like the VGG model having many parameters. But the accuracy drops a lot for the small model. In order to improve the tradeoff between accuracy and latency, many quantized training apporaches are proposed.
This document is to design a quantized training framework on Fluid. The first part will introduce how to quantize, The second part will describe the quantized training framework. The last part will illustrate how to calculate the quantization scale.
### How to quantize
There are many ways to quantize the float value to fixed-point value. For example:
$$ r = min(max(x, a), b)$$
$$ s = \frac{b - a}{n - 1} $$
$$ q = \left \lfloor \frac{r - a}{s} \right \rceil $$
where, $x$ is the float value to be quantized, $[a, b]$ is the quantization range, $a$ is the minimum value and $b$ is the maximal value. $\left \lfloor \right \rceil$ denotes rounding to the nearest integer. If the quantization level is $k$, $n$ is $2^k$, for example, $k$ is 8 and $n$ is 256. $q$ is the quantized integer.
The quantization we applied is parameterized by the number of quantization levels and maximum absolute value:
$$ M = max(abs(x)) $$
$$ q = \left \lfloor \frac{x}{M} * (n - 1) \right \rceil $$
where, $x$ is the float value to be quantized, $M$ is maximum absolute value. $\left \lfloor \right \rceil$ denotes rounding to the nearest integer. For 8 bit quantization, $n=2^{8}=256$. $q$ is the quantized integer.
Wether the *min-max* quantization or *max-abs* quantization, they also can be represent:
$q = scale * r + b$
We call *min-max*, *max-abs* as the quantization arguments, also call them quantization scale or quantization range.
How to calculate the quantization scale (or maximum absolute value) for inference will be described in the last part.
### Training Framework
#### Forward pass
The forward pass is simulated quantization, see Figure 1.
The training framework is as following figure.
<p align="center">
<img src="quantization_forward.png" width="300" height="340"><br/>
Figure 1. Forward in training with simulated quantization.
</p>
- Firstly, both input and weight will be quantized to 8-bit integers.
- Second, do the multiplication (or convolution) operation with integers.
- Third, dequantize the multiplication (or convolution) results to 32-bit float point.
- Finally, do bias-addition in float type of 32 bit. Here, the bias is not quantized.
For general matrix multiplication (GEMM), quantize for $X$ and $W$:
$$ X_q = \left \lfloor \frac{X}{X_m} * (n - 1) \right \rceil $$
$$ W_q = \left \lfloor \frac{W}{W_m} * (n - 1) \right \rceil $$
Do GEMM:
$$ Y = X_q * W_q $$
Dequantize $Y$:
$$
\begin{align}
Y_{dq} &=\frac{Y}{(n - 1) * (n - 1)} * X_m * W_m \\\
&=\frac{X_q * W_q}{(n - 1) * (n - 1)} * X_m * W_m \\\
&=(\frac{X_q}{n - 1} * X_m) * (\frac{W_q}{n - 1} * W_m)
\end{align}
$$
From these formulas, dequantization also can be moved before GEMM, do dequantization for $Xq$ and $Wq$ at first, then do GEMM. The forward workflow in training is equivalent to following framework.
<p align="center">
<img src="quantization_equivalent_forward.png" width="300" height="330"><br/>
Figure 2. Equivalent forward in training with simulated quantization.
</p>
We use this equivalent workflow in the training. In our desigin, there is a quantization transpiler to insert the quantization operator and the de-quantization operator in the Fluid `ProgramDesc`. Since the outputs of quantization and de-quantization operator are still in floating point, they are called faked quantization and de-quantization operator. And the training framework is called simulated quantization.
#### Backward pass
See Figure 3. The gradients are calculated by dequantized weights and activations. All inputs and outputs are float point with 32-bit. And in the weight updating process, the gradients will be added to the original weight, not the quantized or dequantized weights.
<p align="center">
<img src="quantization_backward_and_optimization.png"><br/>
Figure 3. Backward and weight updating in training with simulated quantization.
</p>
So the quantization transipler will change some inputs of the corresponding backward operators.
### How to calculate quantization scale
There are two strategies to calculate quantization scale, we call them dynamic and static strategy. The dynamic strategy calculates the quantization scale value each iteration. The static strategy keeps the quantization scale for different inputs.
For weights, we apply the dynamic strategy in the training, that is to say, the quantization scale will be recalculated during each iteration until the traning is finished.
For activations, the quantization scales are estimated during training, then used in inference. There are several different ways to estimate them:
1. Calculate the mean of maximum absolute during a window.
2. Calculate the max of maximum absolute during a window.
3. Calculate the running mean of maximum absolute during a window, as follows:
$$ Vt = (1 - k) * V + k * V_{t-1} $$
where, $V$ is the maximum absolute value of current batch, $Vt$ is the running mean value. $k$ is a factor, such as 0.9.

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

@ -28,9 +28,9 @@
### 准备预测模型
准备预测模型部分,我们以手写数字识别任务为例进行介绍。手写数字识别任务定义了一个含有[两个隐层的简单全连接网络](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression),网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看[此目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense) 中的相关脚本。
准备预测模型部分,我们以手写数字识别任务为例进行介绍。手写数字识别任务定义了一个含有[两个隐层的简单全连接网络](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md#softmax回归softmax-regression),网络接受一幅图片作为输入,将图片分类到 0 ~ 9 类别标签之一。完整代码可以查看[此目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense) 中的相关脚本。
调用C-API开发预测程序需要一个训练好的模型运行[MNIST手写数字识别目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)下的[mnist_v2.py](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/examples/model_inference/dense/mnist_v2.py)脚本,在终端执行`python mnist_v2.py`,会使用 PaddlePaddle 内置的 [MNIST 数据集](http://yann.lecun.com/exdb/mnist/)进行训练。训练好的模型默认保存在当前运行目录下的`models`目录中。
调用C-API开发预测程序需要一个训练好的模型运行[MNIST手写数字识别目录](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense)下的[mnist_v2.py](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/examples/model_inference/dense/mnist_v2.py)脚本,在终端执行`python mnist_v2.py`,会使用 PaddlePaddle 内置的 [MNIST 数据集](http://yann.lecun.com/exdb/mnist/)进行训练。训练好的模型默认保存在当前运行目录下的`models`目录中。
下面,我们将训练结束后存储下来的模型转换成预测模型。
@ -48,7 +48,7 @@
dump_v2_config(predict, "trainer_config.bin", True)
```
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)这个示例,[`mnist_v2.py`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense/mnist_v2.py)脚本集成了序列化神经网络结构的过程,可以直接运行 `python mnist_v2.py --task dump_config` 对神经网络结构进行序列化,结果会写入当前运行目录下的`trainer_config.bin`文件中。
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense)这个示例,[`mnist_v2.py`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense/mnist_v2.py)脚本集成了序列化神经网络结构的过程,可以直接运行 `python mnist_v2.py --task dump_config` 对神经网络结构进行序列化,结果会写入当前运行目录下的`trainer_config.bin`文件中。
使用这种方式,需要**在运行时将神经网络的多个可学习参数放在同一个目录中**C-API可以通过分别指定序列化后的网络结构文件和参数目录来加载训练好的模型。
@ -68,7 +68,7 @@
merge_v2_model(net, param_file, output_file)
```
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense)这个示例,可直接运行 `python` [merge_v2_model.py](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference/dense/merge_v2_model.py)。序列化结果会写入当前运行目录下的`output.paddle.model`文件中。使用这种方式运行时C-API可以通过指定`output.paddle.model`文件的路径来加载预测模型。
对[手写数字识别](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense)这个示例,可直接运行 `python` [merge_v2_model.py](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference/dense/merge_v2_model.py)。序列化结果会写入当前运行目录下的`output.paddle.model`文件中。使用这种方式运行时C-API可以通过指定`output.paddle.model`文件的路径来加载预测模型。
#### 注意事项
1. 为使用C-API在调用`dump_v2_config`序列化神经网络结构时,参数`binary`必须指定为`True`。
@ -77,10 +77,10 @@
### 编写预测代码
预测代码更多详细示例代码请参考[C-API使用示例](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/capi/examples/model_inference) 目录下的代码示例。这一节对图1中预测代码编写的5个步骤进行介绍和说明。
预测代码更多详细示例代码请参考[C-API使用示例](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/capi/examples/model_inference) 目录下的代码示例。这一节对图1中预测代码编写的5个步骤进行介绍和说明。
#### step 1. 初始化PaddlePaddle运行环境
第一步需调用[`paddle_init`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/main.h#L27) 初始化PaddlePaddle运行环境该接口接受两个参数参数的个数和参数列表。
第一步需调用[`paddle_init`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/main.h#L27) 初始化PaddlePaddle运行环境该接口接受两个参数参数的个数和参数列表。
#### step2. 加载模型
@ -88,8 +88,8 @@
概念上,在 PaddlePaddle 内部一个GradientMachine类的对象管理着一组计算层PaddlePaddle Layers来完成前向和反向计算并处理与之相关的所有细节。在调用C-API预测时只需进行前向计算而无需调用反向计算。这篇文档之后部分会使用`gradient machine`来特指调用PaddlePaddle C-API创建的GradientMachine类的对象。每一个 `gradient machine` 都会管理维护一份训练好的模型下面是C-API提供的两种常用的模型加载方式
1. 调用[`paddle_gradient_machine_load_parameter_from_disk`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L61)接口,从磁盘加载预测模型。这时`gradient machine`会独立拥有一份训练好的模型;
1. 调用[`paddle_gradient_machine_create_shared_param`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L88)接口,与其它`gradient machine`的共享已经加载的预测模型。这种情况多出现在使用多线程预测时,通过多个线程共享同一个模型来减少内存开销。可参考[此示例](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/examples/model_inference/multi_thread/main.c)。
1. 调用[`paddle_gradient_machine_load_parameter_from_disk`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/gradient_machine.h#L61)接口,从磁盘加载预测模型。这时`gradient machine`会独立拥有一份训练好的模型;
1. 调用[`paddle_gradient_machine_create_shared_param`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/gradient_machine.h#L88)接口,与其它`gradient machine`的共享已经加载的预测模型。这种情况多出现在使用多线程预测时,通过多个线程共享同一个模型来减少内存开销。可参考[此示例](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/examples/model_inference/multi_thread/main.c)。
- 注意事项
@ -117,7 +117,7 @@ C-API支持的所有输入数据类型和他们的组织方式请参考“输
#### step 4. 前向计算
完成上述准备之后,通过调用 [`paddle_gradient_machine_forward`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/capi/gradient_machine.h#L73) 接口完成神经网络的前向计算。
完成上述准备之后,通过调用 [`paddle_gradient_machine_forward`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/capi/gradient_machine.h#L73) 接口完成神经网络的前向计算。
#### step 5. 清理

@ -45,14 +45,31 @@ endfunction(inference_api_test)
cc_library(paddle_inference_api
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
if(NOT APPLE)
set(LINK_FLAGS "-Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/paddle_inference_api.sym")
set_target_properties(paddle_inference_api PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
endif()
# Here the shared library doesn't depend on other fluid libraries, or double free will occur.
cc_library(paddle_inference_api_shared SHARED
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc)
add_dependencies(paddle_inference_api_shared ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
set_target_properties(paddle_inference_api_shared PROPERTIES OUTPUT_NAME paddle_inference_api)
if(NOT APPLE)
set(LINK_FLAGS "-fPIC -fvisibility=hidden")
set(LINK_FLAGS "-Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/paddle_inference_api.map")
set_target_properties(paddle_inference_api_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
FILE(WRITE ${CMAKE_CURRENT_BINARY_DIR}/check_symbol.cmake
"execute_process(COMMAND bash -c \"${CMAKE_CURRENT_SOURCE_DIR}/check_symbol.sh"
" ${CMAKE_CURRENT_BINARY_DIR}/libpaddle_inference_api.so\" RESULT_VARIABLE symbol_res)\n"
"if(NOT \"\${symbol_res}\" STREQUAL \"0\")\n"
" message(FATAL_ERROR \"Check symbol failed.\")\n"
"endif()\n")
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/.check_symbol"
COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_BINARY_DIR}/check_symbol.cmake"
DEPENDS paddle_inference_api_shared)
add_custom_target(check_symbol ALL DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/.check_symbol")
endif()
cc_test(test_paddle_inference_api

@ -0,0 +1,12 @@
#!/bin/bash
lib=$1
if [ $# -ne 1 ]; then echo "No input library"; exit -1 ; fi
num_paddle_syms=$(nm -D --defined-only ${lib} | grep paddle | wc -l)
num_google_syms=$(nm -D --defined-only ${lib} | grep google | wc -l)
if [ $num_paddle_syms -le 0 ]; then echo "Have no paddle symbols"; exit -1 ; fi
if [ $num_google_syms -ge 1 ]; then echo "Have some google symbols"; exit -1 ; fi
exit 0

@ -13,8 +13,6 @@
# limitations under the License.
#
inference_api_test(simple_on_word2vec ARGS test_word2vec)
option(WITH_INFERENCE_DEMO "Compile with Inference demo" OFF)
if(NOT WITH_INFERENCE_DEMO)
return()

@ -0,0 +1,77 @@
cmake_minimum_required(VERSION 3.0)
project(cpp_inference_demo CXX C)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
if(NOT DEFINED PADDLE_LIB)
message(FATAL_ERROR "please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib")
endif()
if(NOT DEFINED DEMO_NAME)
message(FATAL_ERROR "please set DEMO_NAME with -DDEMO_NAME=demo_name")
endif()
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
if(WITH_GPU)
set(CUDA_LIB "/usr/local/cuda/lib64/" CACHE STRING "CUDA Library")
endif()
include_directories("${PADDLE_LIB}")
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
include_directories("${PADDLE_LIB}/third_party/install/snappy/include")
include_directories("${PADDLE_LIB}/third_party/install/snappystream/include")
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
include_directories("${PADDLE_LIB}/third_party/boost")
include_directories("${PADDLE_LIB}/third_party/eigen3")
link_directories("${PADDLE_LIB}/third_party/install/snappy/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
link_directories("${PADDLE_LIB}/third_party/install/glog/lib")
link_directories("${PADDLE_LIB}/third_party/install/gflags/lib")
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
add_executable(${DEMO_NAME} ${DEMO_NAME}.cc)
if(WITH_MKL)
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel.so
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5.so)
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
endif()
else()
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas.a)
endif()
if(WITH_STATIC_LIB)
set(DEPS
"-Wl,--whole-archive"
${PADDLE_LIB}/paddle/fluid/inference/libpaddle_fluid.a
"-Wl,--no-whole-archive"
${PADDLE_LIB}/contrib/inference/libpaddle_inference_api.a)
else()
# Note: libpaddle_inference_api.so must put before libpaddle_fluid.so
set(DEPS
${PADDLE_LIB}/contrib/inference/libpaddle_inference_api.so
${PADDLE_LIB}/paddle/fluid/inference/libpaddle_fluid.so)
endif()
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf snappystream snappy z
${EXTERNAL_LIB})
if(WITH_GPU)
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart.so)
endif()
target_link_libraries(${DEMO_NAME} ${DEPS})

@ -0,0 +1,34 @@
set -x
PADDLE_ROOT=$1
WITH_MKL=$2
WITH_GPU=$3
if [ $3 == "ON" ]; then
use_gpu_list='true false'
else
use_gpu_list='false'
fi
mkdir -p build
cd build
for WITH_STATIC_LIB in false; do
rm -rf *
cmake .. -DPADDLE_LIB=${PADDLE_ROOT}/build/fluid_install_dir/ \
-DWITH_MKL=$WITH_MKL \
-DDEMO_NAME=simple_on_word2vec \
-DWITH_GPU=$WITH_GPU \
-DWITH_STATIC_LIB=$WITH_STATIC_LIB
make
for use_gpu in $use_gpu_list; do
./simple_on_word2vec \
--dirname=${PADDLE_ROOT}/build/python/paddle/fluid/tests/book/word2vec.inference.model \
--use_gpu=$use_gpu
done
done
if [ $? -eq 0 ]; then
exit 0
else
echo "inference demo runs fail."
exit 1
fi
set +x

@ -16,21 +16,27 @@ limitations under the License. */
* This file contains a simple demo for how to take a model for inference.
*/
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <memory>
#include <thread>
#include "paddle/contrib/inference/paddle_inference_api.h"
#include "contrib/inference/paddle_inference_api.h"
#include "paddle/fluid/platform/enforce.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_bool(use_gpu, false, "Whether use gpu.");
namespace paddle {
namespace demo {
DEFINE_string(dirname, "", "Directory of the inference model.");
void Main(bool use_gpu) {
//# 1. Create PaddlePredictor with a config.
NativeConfig config;
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
if (FLAGS_dirname.empty()) {
LOG(INFO) << "Usage: ./simple_on_word2vec --dirname=path/to/your/model";
exit(1);
}
config.model_dir = FLAGS_dirname;
config.use_gpu = use_gpu;
config.fraction_of_gpu_memory = 0.15;
config.device = 0;
@ -54,12 +60,16 @@ void Main(bool use_gpu) {
CHECK(predictor->Run(slots, &outputs));
//# 4. Get output.
ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "output buffer size: " << outputs.front().data.length();
PADDLE_ENFORCE(outputs.size(), 1UL);
// Check the output buffer size and result of each tid.
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
float result[5] = {
0.00129761, 0.00151112, 0.000423564, 0.00108815, 0.000932706};
const size_t num_elements = outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data())[i];
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
result[i]);
}
}
}
@ -68,7 +78,7 @@ void MainThreads(int num_threads, bool use_gpu) {
// Multi-threads only support on CPU
// 0. Create PaddlePredictor with a config.
NativeConfig config;
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
config.model_dir = FLAGS_dirname;
config.use_gpu = use_gpu;
config.fraction_of_gpu_memory = 0.15;
config.device = 0;
@ -94,14 +104,17 @@ void MainThreads(int num_threads, bool use_gpu) {
CHECK(predictor->Run(inputs, &outputs));
// 4. Get output.
ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "TID: " << tid << ", "
<< "output buffer size: " << outputs.front().data.length();
PADDLE_ENFORCE(outputs.size(), 1UL);
// Check the output buffer size and result of each tid.
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
float result[5] = {
0.00129761, 0.00151112, 0.000423564, 0.00108815, 0.000932706};
const size_t num_elements =
outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data())[i];
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
result[i]);
}
}
});
@ -111,15 +124,18 @@ void MainThreads(int num_threads, bool use_gpu) {
}
}
TEST(demo, word2vec_cpu) { Main(false /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_cpu_1) { MainThreads(1, false /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_cpu_4) { MainThreads(4, false /*use_gpu*/); }
#ifdef PADDLE_WITH_CUDA
TEST(demo, word2vec_gpu) { Main(true /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_gpu_1) { MainThreads(1, true /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_gpu_4) { MainThreads(4, true /*use_gpu*/); }
#endif
} // namespace demo
} // namespace paddle
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
paddle::demo::Main(false /* use_gpu*/);
paddle::demo::MainThreads(1, false /* use_gpu*/);
paddle::demo::MainThreads(4, false /* use_gpu*/);
if (FLAGS_use_gpu) {
paddle::demo::Main(true /*use_gpu*/);
paddle::demo::MainThreads(1, true /*use_gpu*/);
paddle::demo::MainThreads(4, true /*use_gpu*/);
}
return 0;
}

@ -0,0 +1,6 @@
{
global:
*paddle*;
local:
*;
};

@ -249,7 +249,7 @@ void MainThreadsImageClassification(bool use_gpu) {
const size_t len = local_outputs[0].data.length();
float* data = static_cast<float*>(local_outputs[0].data.data());
float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), len / sizeof(float));
EXPECT_EQ((size_t)refs[tid].numel(), len / sizeof(float));
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}

@ -27,6 +27,7 @@ cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory)
nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_library(reader SRCS reader.cc DEPS lod_tensor ddim)
cc_test(reader_test SRCS reader_test.cc DEPS reader)
cc_test(variable_test SRCS variable_test.cc)

@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include <stdexcept>
#include <string>
#include <vector>
#include "paddle/fluid/framework/executor.h"
@ -53,8 +54,14 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
}
}
}
std::vector<framework::LoDTensor> fetch_data;
std::exception_ptr eptr;
try {
fetch_data = underlying_executor_->Run(fetch_tensors);
} catch (...) {
eptr = std::current_exception();
}
auto fetch_data = underlying_executor_->Run(fetch_tensors);
drop_scope_counter_ += 1;
if (!fetch_tensors.empty() ||
drop_scope_counter_ == strategy_.num_iteration_per_drop_scope_) {
@ -69,7 +76,11 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
scope->DeleteScope(local_scope);
}
}
return fetch_data;
if (eptr) {
std::rethrow_exception(eptr);
} else {
return fetch_data;
}
}
} // namespace details
} // namespace framework

@ -78,6 +78,10 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
set.clear();
};
// Clean run context
run_op_futures_.clear();
exception_.reset();
// Step 3. Execution
while (!pending_vars.empty()) {
// 1. Run All Ready ops
@ -96,16 +100,19 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto cur_ready_vars = ready_vars.PopAll(1, &timeout);
if (timeout) {
std::lock_guard<std::mutex> l(exception_mu_);
std::unique_lock<std::mutex> l(exception_mu_);
if (exception_) {
l.unlock();
for (auto &run_op_future : run_op_futures_) {
run_op_future.wait();
}
l.lock();
std::exception *exp = exception_.get();
if (dynamic_cast<platform::EOFException *>(exp)) {
auto e = *static_cast<platform::EOFException *>(exp);
exception_.reset();
throw e;
} else if (dynamic_cast<platform::EnforceNotMet *>(exp)) {
auto e = *static_cast<platform::EnforceNotMet *>(exp);
exception_.reset();
throw e;
} else {
LOG(FATAL) << "Unknown exception.";
@ -222,7 +229,7 @@ void ThreadedSSAGraphExecutor::RunOp(
}
};
if (pool_) {
pool_->enqueue(op_run);
run_op_futures_.emplace_back(pool_->enqueue(op_run));
} else {
op_run();
}

@ -15,6 +15,7 @@
#pragma once
#include <deque>
#include <list>
#include <string>
#include <unordered_set>
#include <utility>
@ -77,6 +78,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
private:
ExecutionStrategy strategy_;
// use std::list because clear(), push_back, and for_each are O(1)
std::list<std::future<void>> run_op_futures_;
};
} // namespace details

@ -21,8 +21,8 @@ namespace framework {
// a static local variable is already being initialized.
// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex
OpInfoMap& OpInfoMap::Instance() {
static OpInfoMap* g_op_info_map = new OpInfoMap();
return *g_op_info_map;
static OpInfoMap g_op_info_map;
return g_op_info_map;
}
} // namespace framework
} // namespace paddle

@ -13,29 +13,61 @@
// limitations under the License.
#include "paddle/fluid/framework/reader.h"
#include <deque>
namespace paddle {
namespace framework {
ReaderBase::~ReaderBase() {}
FileReader::FileReader(const std::vector<DDim> &dims) : dims_(dims) {}
void FileReader::ReadNext(std::vector<LoDTensor> *out) {
void ReaderBase::ReadNext(std::vector<LoDTensor> *out) {
std::lock_guard<std::mutex> lock(mu_);
PADDLE_ENFORCE_EQ(status_, ReaderStatus::kRunning);
ReadNextImpl(out);
if (out->empty()) {
return;
}
}
PADDLE_ENFORCE_EQ(out->size(), dims_.size());
for (size_t i = 0; i < dims_.size(); ++i) {
auto &actual = (*out)[i].dims();
auto &expect = dims_[i];
void ReaderBase::InsertDecoratedReader(
const std::shared_ptr<ReaderBase> &decorated_reader) {
std::lock_guard<std::mutex> guard(mu_);
decorated_readers_.emplace_back(decorated_reader);
}
PADDLE_ENFORCE_EQ(actual.size(), expect.size());
for (int j = 0; j < actual.size(); ++j) {
// PADDLE_ENFORCE(actual[i] == expect[i] || expect[i] == -1);
std::unordered_set<ReaderBase *> ReaderBase::GetEndPoints() {
std::unordered_set<ReaderBase *> result;
std::deque<ReaderBase *> queue;
queue.emplace_back(this);
while (!queue.empty()) { // BFS search
auto *front = queue.front();
queue.pop_front();
if (front->decorated_readers_.empty()) {
result.emplace(front);
} else {
for (auto &reader : front->decorated_readers_) {
if (auto *reader_ptr = reader.lock().get()) {
queue.emplace_back(reader_ptr);
}
}
}
}
return result;
}
void ReaderBase::Shutdown() {
std::lock_guard<std::mutex> lock(mu_);
if (status_ != ReaderStatus::kStopped) {
ShutdownImpl();
status_ = ReaderStatus::kStopped;
}
}
void ReaderBase::Start() {
std::lock_guard<std::mutex> lock(mu_);
if (status_ != ReaderStatus::kRunning) {
StartImpl();
status_ = ReaderStatus::kRunning;
}
}
ReaderBase::~ReaderBase() { Shutdown(); }
} // namespace framework
} // namespace paddle

@ -15,6 +15,7 @@
#pragma once
#include <memory>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
@ -24,61 +25,116 @@
namespace paddle {
namespace framework {
enum ReaderStatus { kRunning, kStopped };
class ReaderBase {
public:
virtual void ReadNext(std::vector<LoDTensor>* out) = 0;
void ReadNext(std::vector<LoDTensor>* out);
void Shutdown();
virtual void ReInit() = 0;
void Start();
// Return the readers which are the end of decorating chain. Basically
// they are readers just before read op.
std::unordered_set<ReaderBase*> GetEndPoints();
virtual ~ReaderBase();
protected:
virtual void ReadNextImpl(std::vector<LoDTensor>* out) = 0;
virtual void ShutdownImpl() {}
virtual void StartImpl() {}
ReaderStatus status_{kRunning};
mutable std::mutex mu_;
private:
friend class DecoratedReader;
// These methods can be only invoked inside DecoratedReader to record the
// decorating chain.
void InsertDecoratedReader(
const std::shared_ptr<ReaderBase>& decorated_reader);
// A set of which readers that decorated this reader.
std::vector<std::weak_ptr<ReaderBase>> decorated_readers_;
};
class DecoratedReader : public ReaderBase {
class DecoratedReader : public ReaderBase,
public std::enable_shared_from_this<DecoratedReader> {
public:
explicit DecoratedReader(const std::shared_ptr<ReaderBase>& reader)
: ReaderBase(), reader_(reader) {
PADDLE_ENFORCE_NOT_NULL(reader_);
}
void ReInit() override { reader_->ReInit(); }
void RegisterDecorateChain() {
reader_->InsertDecoratedReader(shared_from_this());
}
protected:
std::shared_ptr<ReaderBase> reader_;
};
class FileReader : public ReaderBase {
public:
explicit FileReader(const std::vector<DDim>& dims);
void ReadNext(std::vector<LoDTensor>* out) override;
void ShutdownImpl() override { reader_->Shutdown(); }
protected:
virtual void ReadNextImpl(std::vector<LoDTensor>* out) = 0;
void StartImpl() override { reader_->Start(); }
private:
std::vector<DDim> dims_;
std::shared_ptr<ReaderBase> reader_;
};
// FileReader is just a conceptual class.
class FileReader : public ReaderBase {};
// The ReaderHolder is used as reader' unified wrapper,
// making it easier to access different type reader in Variables.
class ReaderHolder {
public:
void Reset(ReaderBase* reader) { reader_.reset(reader); }
template <typename T>
void Reset(const std::shared_ptr<T>& reader) {
auto reader_base = std::dynamic_pointer_cast<ReaderBase>(reader);
PADDLE_ENFORCE_NOT_NULL(reader_base);
reader_ = reader_base;
}
std::shared_ptr<ReaderBase> Get() const { return reader_; }
const std::shared_ptr<ReaderBase>& Get() const { return reader_; }
void ReadNext(std::vector<LoDTensor>* out) {
PADDLE_ENFORCE_NOT_NULL(reader_);
reader_->ReadNext(out);
}
void ReInit() {
void ResetAll() {
auto end_readers = reader_->GetEndPoints();
for (auto* reader : end_readers) {
reader->Shutdown();
}
for (auto* reader : end_readers) {
reader->Start();
}
}
void Shutdown() {
PADDLE_ENFORCE_NOT_NULL(reader_);
reader_->Shutdown();
}
void Start() {
PADDLE_ENFORCE_NOT_NULL(reader_);
reader_->ReInit();
reader_->Start();
}
operator const std::shared_ptr<ReaderBase>&() const { return this->reader_; }
private:
std::shared_ptr<ReaderBase> reader_;
};
template <typename T, typename... ARGS>
inline std::shared_ptr<DecoratedReader> MakeDecoratedReader(ARGS&&... args) {
std::shared_ptr<DecoratedReader> reader(new T(std::forward<ARGS>(args)...));
reader->RegisterDecorateChain();
return reader;
}
} // namespace framework
} // namespace paddle

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save