|
|
|
@ -11,21 +11,20 @@
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import contextlib
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
import paddle.v2.fluid as fluid
|
|
|
|
|
import paddle.v2.fluid.core as core
|
|
|
|
|
import paddle.v2.fluid.framework as framework
|
|
|
|
|
import paddle.v2.fluid.layers as pd
|
|
|
|
|
from paddle.v2.fluid.executor import Executor
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
dict_size = 30000
|
|
|
|
|
source_dict_dim = target_dict_dim = dict_size
|
|
|
|
|
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
|
|
|
|
|
hidden_dim = 32
|
|
|
|
|
word_dim = 16
|
|
|
|
|
IS_SPARSE = True
|
|
|
|
|
batch_size = 2
|
|
|
|
|
max_length = 8
|
|
|
|
|
topk_size = 50
|
|
|
|
@ -34,10 +33,8 @@ beam_size = 2
|
|
|
|
|
|
|
|
|
|
decoder_size = hidden_dim
|
|
|
|
|
|
|
|
|
|
place = core.CPUPlace()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def encoder():
|
|
|
|
|
def encoder(is_sparse):
|
|
|
|
|
# encoder
|
|
|
|
|
src_word_id = pd.data(
|
|
|
|
|
name="src_word_id", shape=[1], dtype='int64', lod_level=1)
|
|
|
|
@ -45,7 +42,7 @@ def encoder():
|
|
|
|
|
input=src_word_id,
|
|
|
|
|
size=[dict_size, word_dim],
|
|
|
|
|
dtype='float32',
|
|
|
|
|
is_sparse=IS_SPARSE,
|
|
|
|
|
is_sparse=is_sparse,
|
|
|
|
|
param_attr=fluid.ParamAttr(name='vemb'))
|
|
|
|
|
|
|
|
|
|
fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
|
|
|
|
@ -54,7 +51,7 @@ def encoder():
|
|
|
|
|
return encoder_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def decoder_train(context):
|
|
|
|
|
def decoder_train(context, is_sparse):
|
|
|
|
|
# decoder
|
|
|
|
|
trg_language_word = pd.data(
|
|
|
|
|
name="target_language_word", shape=[1], dtype='int64', lod_level=1)
|
|
|
|
@ -62,7 +59,7 @@ def decoder_train(context):
|
|
|
|
|
input=trg_language_word,
|
|
|
|
|
size=[dict_size, word_dim],
|
|
|
|
|
dtype='float32',
|
|
|
|
|
is_sparse=IS_SPARSE,
|
|
|
|
|
is_sparse=is_sparse,
|
|
|
|
|
param_attr=fluid.ParamAttr(name='vemb'))
|
|
|
|
|
|
|
|
|
|
rnn = pd.DynamicRNN()
|
|
|
|
@ -82,10 +79,10 @@ def decoder_train(context):
|
|
|
|
|
return rnn()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def decoder_decode(context):
|
|
|
|
|
def decoder_decode(context, is_sparse):
|
|
|
|
|
init_state = context
|
|
|
|
|
array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
|
|
|
|
|
counter = pd.zeros(shape=[1], dtype='int64')
|
|
|
|
|
counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)
|
|
|
|
|
|
|
|
|
|
# fill the first element with init_state
|
|
|
|
|
state_array = pd.create_array('float32')
|
|
|
|
@ -117,7 +114,7 @@ def decoder_decode(context):
|
|
|
|
|
input=pre_ids,
|
|
|
|
|
size=[dict_size, word_dim],
|
|
|
|
|
dtype='float32',
|
|
|
|
|
is_sparse=IS_SPARSE)
|
|
|
|
|
is_sparse=is_sparse)
|
|
|
|
|
|
|
|
|
|
# use rnn unit to update rnn
|
|
|
|
|
current_state = pd.fc(input=[pre_ids_emb, pre_state_expanded],
|
|
|
|
@ -150,7 +147,7 @@ def decoder_decode(context):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_init_lod(data, lod, place):
|
|
|
|
|
res = core.LoDTensor()
|
|
|
|
|
res = fluid.LoDTensor()
|
|
|
|
|
res.set(data, place)
|
|
|
|
|
res.set_lod(lod)
|
|
|
|
|
return res
|
|
|
|
@ -165,15 +162,19 @@ def to_lodtensor(data, place):
|
|
|
|
|
lod.append(cur_len)
|
|
|
|
|
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
|
|
|
|
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
|
|
|
|
res = core.LoDTensor()
|
|
|
|
|
res = fluid.LoDTensor()
|
|
|
|
|
res.set(flattened_data, place)
|
|
|
|
|
res.set_lod([lod])
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_main():
|
|
|
|
|
context = encoder()
|
|
|
|
|
rnn_out = decoder_train(context)
|
|
|
|
|
def train_main(use_cuda, is_sparse):
|
|
|
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
|
|
|
|
|
|
|
|
context = encoder(is_sparse)
|
|
|
|
|
rnn_out = decoder_train(context, is_sparse)
|
|
|
|
|
label = pd.data(
|
|
|
|
|
name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
|
|
|
|
|
cost = pd.cross_entropy(input=rnn_out, label=label)
|
|
|
|
@ -212,9 +213,13 @@ def train_main():
|
|
|
|
|
batch_id += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def decode_main():
|
|
|
|
|
context = encoder()
|
|
|
|
|
translation_ids, translation_scores = decoder_decode(context)
|
|
|
|
|
def decode_main(use_cuda, is_sparse):
|
|
|
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
|
|
|
|
|
|
|
|
context = encoder(is_sparse)
|
|
|
|
|
translation_ids, translation_scores = decoder_decode(context, is_sparse)
|
|
|
|
|
|
|
|
|
|
exe = Executor(place)
|
|
|
|
|
exe.run(framework.default_startup_program())
|
|
|
|
@ -250,6 +255,60 @@ def decode_main():
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestMachineTranslation(unittest.TestCase):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
|
def scope_prog_guard():
|
|
|
|
|
prog = fluid.Program()
|
|
|
|
|
startup_prog = fluid.Program()
|
|
|
|
|
scope = fluid.core.Scope()
|
|
|
|
|
with fluid.scope_guard(scope):
|
|
|
|
|
with fluid.program_guard(prog, startup_prog):
|
|
|
|
|
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inject_test_train(use_cuda, is_sparse):
|
|
|
|
|
f_name = 'test_{0}_{1}_train'.format('cuda' if use_cuda else 'cpu', 'sparse'
|
|
|
|
|
if is_sparse else 'dense')
|
|
|
|
|
|
|
|
|
|
def f(*args):
|
|
|
|
|
with scope_prog_guard():
|
|
|
|
|
train_main(use_cuda, is_sparse)
|
|
|
|
|
|
|
|
|
|
setattr(TestMachineTranslation, f_name, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inject_test_decode(use_cuda, is_sparse, decorator=None):
|
|
|
|
|
f_name = 'test_{0}_{1}_decode'.format('cuda'
|
|
|
|
|
if use_cuda else 'cpu', 'sparse'
|
|
|
|
|
if is_sparse else 'dense')
|
|
|
|
|
|
|
|
|
|
def f(*args):
|
|
|
|
|
with scope_prog_guard():
|
|
|
|
|
decode_main(use_cuda, is_sparse)
|
|
|
|
|
|
|
|
|
|
if decorator is not None:
|
|
|
|
|
f = decorator(f)
|
|
|
|
|
|
|
|
|
|
setattr(TestMachineTranslation, f_name, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for _use_cuda_ in (False, True):
|
|
|
|
|
for _is_sparse_ in (False, True):
|
|
|
|
|
inject_test_train(_use_cuda_, _is_sparse_)
|
|
|
|
|
|
|
|
|
|
for _use_cuda_ in (False, True):
|
|
|
|
|
for _is_sparse_ in (False, True):
|
|
|
|
|
|
|
|
|
|
_decorator_ = None
|
|
|
|
|
if _use_cuda_:
|
|
|
|
|
_decorator_ = unittest.skip(
|
|
|
|
|
reason='Beam Search does not support CUDA!')
|
|
|
|
|
|
|
|
|
|
inject_test_decode(
|
|
|
|
|
is_sparse=_is_sparse_, use_cuda=_use_cuda_, decorator=_decorator_)
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
# train_main()
|
|
|
|
|
decode_main()
|
|
|
|
|
unittest.main()
|
|
|
|
|