Merge pull request #13424 from chengduoZH/refine_seq_concat

Refine seq_concat
upload-readme
Yu Yang 7 years ago committed by GitHub
commit 2c31ea9293
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -175,6 +175,7 @@ paddle.fluid.layers.stack ArgSpec(args=['x', 'axis'], varargs=None, keywords=Non
paddle.fluid.layers.pad2d ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None))
paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))

@ -441,7 +441,10 @@ static void InitInferShapeFuncs() {
for (auto &kern_pair : OperatorWithKernel::AllOpKernels()) {
auto op_type = kern_pair.first;
auto &op_info = info_map.at(op_type);
auto it = info_map.find(op_type);
PADDLE_ENFORCE(it != info_map.end(), "%s has not been registered",
op_type);
auto &op_info = it->second;
auto op = static_cast<OperatorWithKernel *>(op_info.Creator()(
"", VariableNameMap{}, VariableNameMap{}, AttributeMap{}));
if (op_info.infer_shape_) { // infer_shape has been registered.

@ -95,6 +95,7 @@ class ConcatOpGrad : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext *ctx) const override {
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
ctx->ShareLoD("X", framework::GradVarName("X"));
}
};

@ -109,8 +109,9 @@ class ConcatGradKernel : public framework::OpKernel<T> {
auto& dev_ctx = ctx.template device_context<DeviceContext>();
paddle::operators::math::ConcatGradFunctor<DeviceContext, T>
concat_grad_functor;
concat_grad_functor(dev_ctx, *out_grad, ins, static_cast<int>(axis),
&outputs);
concat_grad_functor(dev_ctx, *out_grad,
ctx.MultiInput<framework::Tensor>("X"),
static_cast<int>(axis), &outputs);
}
}
};

@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
@ -24,10 +24,22 @@ namespace detail {
* and passed by `args`
*/
template <typename T, typename... ARGS>
inline T &Ref(T *ptr, ARGS &&... args) {
inline T& Ref(T* ptr, ARGS&&... args) {
PADDLE_ENFORCE(ptr != nullptr, args...);
return *ptr;
}
template <typename T, typename... ARGS>
inline std::vector<std::reference_wrapper<T>> VectorRef(
const std::vector<T*>& vec, ARGS&&... args) {
std::vector<std::reference_wrapper<T>> result;
result.reserve(vec.size());
for (auto* ptr : vec) {
result.emplace_back(Ref(ptr, args...));
}
return result;
}
} // namespace detail
} // namespace operators
} // namespace paddle

@ -27,7 +27,7 @@ template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
public:
void operator()(const platform::CPUDeviceContext& context,
const std::vector<framework::Tensor>& input, const int axis,
const std::vector<framework::Tensor>& input, int axis,
framework::Tensor* output) {
// TODO(zcd): Add input data validity checking
int num = input.size();
@ -71,7 +71,7 @@ class ConcatGradFunctor<platform::CPUDeviceContext, T> {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& input,
const std::vector<const framework::LoDTensor*>& ref_inputs,
const std::vector<const framework::Tensor*>& ref_inputs,
const int axis, std::vector<framework::Tensor*>* outputs) {
// TODO(zcd): Add input data validity checking
size_t num = outputs->size();
@ -109,16 +109,11 @@ class ConcatGradFunctor<platform::CPUDeviceContext, T> {
}
}
};
#define DEFINE_FUNCTOR(type) \
template class ConcatFunctor<platform::CPUDeviceContext, type>; \
template class ConcatGradFunctor<platform::CPUDeviceContext, type>;
template class ConcatFunctor<platform::CPUDeviceContext, int>;
template class ConcatFunctor<platform::CPUDeviceContext, int64_t>;
template class ConcatFunctor<platform::CPUDeviceContext, float>;
template class ConcatFunctor<platform::CPUDeviceContext, double>;
template class ConcatGradFunctor<platform::CPUDeviceContext, int>;
template class ConcatGradFunctor<platform::CPUDeviceContext, int64_t>;
template class ConcatGradFunctor<platform::CPUDeviceContext, float>;
template class ConcatGradFunctor<platform::CPUDeviceContext, double>;
FOR_ALL_TYPES(DEFINE_FUNCTOR);
} // namespace math
} // namespace operators

@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
@ -118,7 +119,7 @@ template <typename T>
class ConcatFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const std::vector<framework::Tensor>& input, const int axis,
const std::vector<framework::Tensor>& input, int axis,
framework::Tensor* output) {
// TODO(zcd): Add input data validity checking
int in_num = input.size();
@ -192,8 +193,8 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input,
const std::vector<const framework::LoDTensor*>& ref_inputs,
const int axis, std::vector<framework::Tensor*>* outputs) {
const std::vector<const framework::Tensor*>& ref_inputs,
int axis, std::vector<framework::Tensor*>* outputs) {
// TODO(zcd): Add input data validity checking
int o_num = outputs->size();
int out_row = 1;
@ -261,15 +262,11 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
}
};
template class ConcatFunctor<platform::CUDADeviceContext, int>;
template class ConcatFunctor<platform::CUDADeviceContext, int64_t>;
template class ConcatFunctor<platform::CUDADeviceContext, float>;
template class ConcatFunctor<platform::CUDADeviceContext, double>;
#define DEFINE_FUNCTOR(type) \
template class ConcatFunctor<platform::CUDADeviceContext, type>; \
template class ConcatGradFunctor<platform::CUDADeviceContext, type>
template class ConcatGradFunctor<platform::CUDADeviceContext, int>;
template class ConcatGradFunctor<platform::CUDADeviceContext, int64_t>;
template class ConcatGradFunctor<platform::CUDADeviceContext, float>;
template class ConcatGradFunctor<platform::CUDADeviceContext, double>;
FOR_ALL_TYPES(DEFINE_FUNCTOR);
} // namespace math
} // namespace operators

@ -37,7 +37,7 @@ template <typename DeviceContext, typename T>
class ConcatFunctor {
public:
void operator()(const DeviceContext& context,
const std::vector<framework::Tensor>& input, const int axis,
const std::vector<framework::Tensor>& input, int axis,
framework::Tensor* output);
};
@ -57,10 +57,21 @@ template <typename DeviceContext, typename T>
class ConcatGradFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const std::vector<const framework::LoDTensor*>& ref_inputs,
const int axis, std::vector<framework::Tensor*>* outputs);
const std::vector<const framework::Tensor*>& ref_inputs,
int axis, std::vector<framework::Tensor*>* outputs);
};
} // namespace math
} // namespace operators
} // namespace paddle
#define FOR_ALL_TYPES(macro) \
macro(int); \
macro(float); \
macro(double); \
macro(bool); \
macro(int64_t); \
macro(int16_t); \
macro(uint8_t); \
macro(int8_t); \
macro(::paddle::platform::float16)

@ -1,136 +1,100 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_concat_op.h"
#include <vector>
namespace paddle {
namespace operators {
class SequenceConcatOp : public framework::OperatorWithKernel {
class SeqConcatOpMaker : public framework::OpProtoAndCheckerMaker {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInputs("X"),
"Inputs(X) of SequenceConcatOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SequenceConcatOp should not be null.");
const size_t level = static_cast<size_t>(ctx->Attrs().Get<int>("level"));
const size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
PADDLE_ENFORCE(level == 0UL || level == 1UL,
"The sequence_concat operator only accepts sequence "
"or a nested sequence as its input.");
auto ins_dims = ctx->GetInputsDim("X");
framework::DDim out_dims = ins_dims[0];
const size_t n = ins_dims.size();
for (size_t i = 1; i < n; ++i) {
out_dims[axis] += ins_dims[i][axis];
}
ctx->SetOutputDim("Out", out_dims);
void Make() override {
AddInput("X", "The inputs of sequence concat op").AsDuplicable();
AddOutput("Out", "The output of sequence concat op");
AddComment(
"Sequence Concat Op\n"
"It will concat LoD tensors by its sequence information.\n"
"For example:\n"
" LoD of X1 = [0, 3, 7]\n"
" LoD of X2 = [0, 7, 9]\n"
" Result LoD is [0, (3+7), (7+9)]\n"
" i.e.[0, 10, 16]\n");
}
};
class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
class SeqConcatShapeInferer : public framework::InferShapeBase {
public:
void Make() override {
AddInput("X",
"(LodTensorArray) Input is a vector of LoDTensor, "
"each of which is a variable-length sequence or nested sequence.")
.AsDuplicable();
AddOutput("Out",
"(LoDTensor), Variable-length output of "
"sequence_concat Op.");
AddAttr<int>("axis",
"(int, default 0) "
"The axis along which the inputs will be joined. "
"If axis is 0, the inputs will be joined with LoD index.")
.SetDefault(0);
AddAttr<int>("level",
"(int, default 0) "
"The level at which the inputs will be joined. "
"If the level is 0, the inputs will be joined at the nested "
"sequence level. "
"If the level is 1, the inputs will be joined at the "
"sequence level. "
"The level should be less than the level number of inputs.")
.SetDefault(0);
AddComment(R"DOC(
The sequence_concat operator concatenates multiple LoDTensors.
It only supports sequence (LoD Tensor with level number is 1)
or a nested sequence (LoD tensor with level number is 2) as its input.
- Case1:
If the axis is other than 0(here, axis is 1 and level is 1),
each input should have the same LoD information and the LoD
information of the output keeps the same as the input.
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4)
LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4)
- Case2:
If the axis is 0(here, leve is 0), the inputs are concatenated along
time steps, the LoD information of the output need to re-compute.
The LoD information of level-1 should be same.
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,2,4}, {0,1,3,5,7}}; Dims(x1) = (7,3,4)
LoD(Out) = {{0,2,4}, {0,2,5,8,11}}; Dims(Out) = (11,3,4)
- Case3:
If the axis is 0(here, level is 1).
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,4}, {0,1,3,5,7}}; Dims(x1) = (7,3,4)
LoD(Out) = {{0,5,8}, {0,1,2,3,5,7,8,9,11}}; Dims(Out) = (11,3,4)
- Case4:
If the LoD number is 1, axis is 0, level is 0
LoD(x0) = {{0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,1,3,5,7}}; Dims(x1) = (7,3,4)
LoD(Out) = {{0,2,5,8,11}}; Dims(Out) = (11,3,4)
NOTE: The levels of all the inputs should be the same.
)DOC");
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInputs("X"),
"Input(X) of Sequence Concat Op should not be null.");
PADDLE_ENFORCE(context->HasOutput("Out"),
"Output(Out) of Sequence Concat Op should not be null.");
PADDLE_ENFORCE_GT(context->Inputs("X").size(), 1,
"The number of input sequences is at least two.");
auto x_dims = context->GetInputsDim("X");
int64_t batch_size = 0;
int64_t feature_size = 0;
std::vector<int64_t> out_dims;
for (auto &x_dim : x_dims) {
if (out_dims.empty()) {
out_dims = framework::vectorize(x_dim);
}
batch_size += x_dim[0];
if (feature_size == 0) {
feature_size = framework::product(x_dim) / x_dim[0];
} else {
PADDLE_ENFORCE_EQ(
feature_size, framework::product(x_dim) / x_dim[0],
"Inputs of sequence concat must have same feature size");
}
}
if (batch_size < 0) {
batch_size = -1; // Normalize batch size for compile time.
}
out_dims[0] = batch_size;
context->SetOutputDim("Out", framework::make_ddim(out_dims));
if (!context->IsRuntime()) { // Runtime LoD infershape will be computed
// in Kernel.
context->ShareLoD("X", "Out");
}
}
};
class SequenceConcatGradOp : public framework::OperatorWithKernel {
class SeqConcatGradShapeInferer : public framework::InferShapeBase {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"The gradient of Out should not be null.");
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
"The gradient of X should not be null.");
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
void operator()(framework::InferShapeContext *context) const override {
context->SetOutputsDim(framework::GradVarName("X"),
context->GetInputsDim("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_concat, ops::SequenceConcatOp,
ops::SequenceConcatOpMaker,
paddle::framework::DefaultGradOpDescMaker<
false> /* set false to disable empty grad */);
REGISTER_OPERATOR(sequence_concat_grad, ops::SequenceConcatGradOp);
REGISTER_OP_CPU_KERNEL(
sequence_concat,
ops::SequenceConcatOpKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
sequence_concat_grad,
ops::SequenceConcatGradOpKernel<paddle::platform::CPUDeviceContext, float>);
namespace op = paddle::operators;
REGISTER_OPERATOR(sequence_concat, paddle::framework::OperatorWithKernel,
op::SeqConcatOpMaker, op::SeqConcatShapeInferer,
paddle::framework::DefaultGradOpDescMaker<false>);
template <typename T>
using Kernel = op::SeqConcatKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat, Kernel<float>, Kernel<double>);
REGISTER_OPERATOR(sequence_concat_grad, paddle::framework::OperatorWithKernel,
op::SeqConcatGradShapeInferer);
template <typename T>
using GradKernel =
op::SeqConcatGradKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat_grad, GradKernel<float>,
GradKernel<double>);

@ -1,23 +1,26 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_concat_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
sequence_concat,
ops::SequenceConcatOpKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(sequence_concat_grad,
ops::SequenceConcatGradOpKernel<
paddle::platform::CUDADeviceContext, float>);
template <typename T>
using Kernel =
paddle::operators::SeqConcatKernel<paddle::platform::CUDADeviceContext, T>;
REGISTER_OP_CUDA_KERNEL(sequence_concat, Kernel<float>, Kernel<double>);
template <typename T>
using GradKernel =
paddle::operators::SeqConcatGradKernel<paddle::platform::CUDADeviceContext,
T>;
REGISTER_OP_CUDA_KERNEL(sequence_concat_grad, GradKernel<float>,
GradKernel<double>);

File diff suppressed because it is too large Load Diff

@ -113,6 +113,7 @@ __all__ = [
'pad2d',
'unstack',
'sequence_enumerate',
'sequence_concat',
]
@ -1781,6 +1782,31 @@ def sequence_pool(input, pool_type):
return pool_out
@templatedoc()
def sequence_concat(input, name=None):
"""
${comment}
Args:
input(list): List of Variables to be concatenated.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: Output variable of the concatenation.
Examples:
.. code-block:: python
out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
"""
helper = LayerHelper('sequence_concat', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
return out
def sequence_first_step(input):
"""
This function gets the first step of sequence.

@ -1,124 +0,0 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
from op_test import OpTest
def to_abs_offset_lod(lod):
offset_lod = [[0] for i in lod]
for i, level in enumerate(lod):
for seq_len in level:
offset_lod[i].append(offset_lod[i][-1] + seq_len)
if len(offset_lod) == 0 or len(offset_lod) == 1:
return offset_lod
import copy
new_offset_lod = copy.deepcopy(offset_lod)
for idx, val in enumerate(offset_lod[0]):
new_offset_lod[0][idx] = offset_lod[1][val]
return new_offset_lod
def seq_concat(inputs, level):
lod0 = inputs['X'][0][1][1]
lod1 = inputs['X'][1][1][1]
x0 = inputs['X'][0][1][0]
x1 = inputs['X'][1][1][0]
level_idx = len(lod0) - level - 1
outs = []
for i in range(len(lod0[level_idx])):
sub_x0 = x0[to_abs_offset_lod(lod0)[level_idx][i]:to_abs_offset_lod(
lod0)[level_idx][i + 1], :]
sub_x1 = x1[to_abs_offset_lod(lod1)[level_idx][i]:to_abs_offset_lod(
lod1)[level_idx][i + 1], :]
outs.append(np.concatenate((sub_x0, sub_x1), axis=0))
return np.concatenate(outs, axis=0)
class TestSeqConcatOp(OpTest):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((4, 8, 3)).astype('float32')
lod1 = [[2, 2], [1, 1, 1, 1]]
axis = 1
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
self.outputs = {'Out': (np.concatenate([x0, x1], axis=1), lod0)}
def setUp(self):
self.op_type = "sequence_concat"
self.set_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
class TestSeqConcatOpLevelZeroNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[2, 2], [1, 2, 2, 2]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[2, 2], [2, 3, 3, 3]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
class TestSeqConcatOplevelOneNestedSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 6, 3)).astype('float32')
lod0 = [[2, 2], [1, 1, 1, 1]]
x1 = np.random.random((7, 6, 3)).astype('float32')
lod1 = [[3, 1], [1, 2, 2, 2]]
axis = 0
level = 1
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[5, 3], [1, 1, 1, 2, 2, 1, 1, 2]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
class TestSeqConcatOpLevelZeroSequence(TestSeqConcatOp):
def set_data(self):
# two level, batch size is 3
x0 = np.random.random((4, 3, 4)).astype('float32')
lod0 = [[1, 1, 1, 1]]
x1 = np.random.random((7, 3, 4)).astype('float32')
lod1 = [[1, 2, 2, 2]]
axis = 0
level = 0
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
self.attrs = {'axis': axis, 'level': level}
out_lod = [[2, 3, 3, 3]]
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
if __name__ == '__main__':
unittest.main()

@ -0,0 +1,45 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestSequenceConcat(OpTest):
def setUp(self):
x1 = np.random.random(size=(10, 80))
lod1 = [7, 3]
x2 = np.random.random(size=(20, 80))
lod2 = [12, 8]
out = np.concatenate((x1[0:lod1[0]], x2[0:lod2[0]], x1[lod1[0]:],
x2[lod2[0]:]))
out_lod = [19, 11]
self.op_type = "sequence_concat"
self.inputs = {'X': [("x1", (x1, [lod1])), ("x2", (x2, [lod2]))]}
self.outputs = {"Out": (out, [out_lod])}
def test_output(self):
self.check_output(1e-3)
def test_dx(self):
self.check_grad(inputs_to_check=['x1', 'x2'], output_names="Out")
if __name__ == '__main__':
unittest.main()
Loading…
Cancel
Save