|
|
|
@ -78,7 +78,12 @@ def conv_net(img, label):
|
|
|
|
|
return loss_net(conv_pool_2, label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
|
|
|
|
|
def train(nn_type,
|
|
|
|
|
use_cuda,
|
|
|
|
|
parallel,
|
|
|
|
|
save_dirname=None,
|
|
|
|
|
model_filename=None,
|
|
|
|
|
params_filename=None):
|
|
|
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
|
|
|
|
@ -146,7 +151,8 @@ def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
|
|
|
|
|
fluid.io.save_inference_model(
|
|
|
|
|
save_dirname, ["img"], [prediction],
|
|
|
|
|
exe,
|
|
|
|
|
save_file_name=save_param_filename)
|
|
|
|
|
model_filename=model_filename,
|
|
|
|
|
params_filename=params_filename)
|
|
|
|
|
return
|
|
|
|
|
else:
|
|
|
|
|
print(
|
|
|
|
@ -158,7 +164,10 @@ def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
|
|
|
|
|
raise AssertionError("Loss of recognize digits is too large")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def infer(use_cuda, save_dirname=None, param_filename=None):
|
|
|
|
|
def infer(use_cuda,
|
|
|
|
|
save_dirname=None,
|
|
|
|
|
model_filename=None,
|
|
|
|
|
params_filename=None):
|
|
|
|
|
if save_dirname is None:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
@ -171,8 +180,9 @@ def infer(use_cuda, save_dirname=None, param_filename=None):
|
|
|
|
|
# the feed_target_names (the names of variables that will be feeded
|
|
|
|
|
# data using feed operators), and the fetch_targets (variables that
|
|
|
|
|
# we want to obtain data from using fetch operators).
|
|
|
|
|
[inference_program, feed_target_names, fetch_targets
|
|
|
|
|
] = fluid.io.load_inference_model(save_dirname, exe, param_filename)
|
|
|
|
|
[inference_program, feed_target_names,
|
|
|
|
|
fetch_targets] = fluid.io.load_inference_model(
|
|
|
|
|
save_dirname, exe, model_filename, params_filename)
|
|
|
|
|
|
|
|
|
|
# The input's dimension of conv should be 4-D or 5-D.
|
|
|
|
|
# Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
|
|
|
|
@ -189,25 +199,27 @@ def infer(use_cuda, save_dirname=None, param_filename=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(use_cuda, parallel, nn_type, combine):
|
|
|
|
|
save_dirname = None
|
|
|
|
|
model_filename = None
|
|
|
|
|
params_filename = None
|
|
|
|
|
if not use_cuda and not parallel:
|
|
|
|
|
save_dirname = "recognize_digits_" + nn_type + ".inference.model"
|
|
|
|
|
save_filename = None
|
|
|
|
|
if combine == True:
|
|
|
|
|
save_filename = "__params_combined__"
|
|
|
|
|
else:
|
|
|
|
|
save_dirname = None
|
|
|
|
|
save_filename = None
|
|
|
|
|
model_filename = "__model_combined__"
|
|
|
|
|
params_filename = "__params_combined__"
|
|
|
|
|
|
|
|
|
|
train(
|
|
|
|
|
nn_type=nn_type,
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
parallel=parallel,
|
|
|
|
|
save_dirname=save_dirname,
|
|
|
|
|
save_param_filename=save_filename)
|
|
|
|
|
model_filename=model_filename,
|
|
|
|
|
params_filename=params_filename)
|
|
|
|
|
infer(
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
save_dirname=save_dirname,
|
|
|
|
|
param_filename=save_filename)
|
|
|
|
|
model_filename=model_filename,
|
|
|
|
|
params_filename=params_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestRecognizeDigits(unittest.TestCase):
|
|
|
|
|