|
|
|
@ -176,55 +176,6 @@ __global__ void MatrixColReduce(const T *__restrict__ in, T *__restrict__ out,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <int BLOCK_W, int BLOCK_H>
|
|
|
|
|
__global__ void FP16MatrixColReduce(
|
|
|
|
|
const paddle::platform::float16 *__restrict__ in,
|
|
|
|
|
paddle::platform::float16 *__restrict__ out, size_t width, size_t height) {
|
|
|
|
|
constexpr int repeats = BLOCK_H / BLOCK_W;
|
|
|
|
|
__shared__ paddle::platform::float16 sdata[BLOCK_H][BLOCK_W + 1];
|
|
|
|
|
size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
|
|
|
|
|
size_t width_stride = gridDim.x * blockDim.x;
|
|
|
|
|
size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
|
|
|
|
|
((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
|
|
|
|
|
size_t full_height = (height & (~((uint64_t)(BLOCK_H - 1)))) +
|
|
|
|
|
((height & (BLOCK_H - 1)) ? BLOCK_H : 0);
|
|
|
|
|
#pragma unroll
|
|
|
|
|
for (size_t w = idx; w < full_width; w += width_stride) {
|
|
|
|
|
for (int r = 0; r < repeats; r++) {
|
|
|
|
|
sdata[threadIdx.y + r * BLOCK_W][threadIdx.x] = 0;
|
|
|
|
|
}
|
|
|
|
|
__syncthreads();
|
|
|
|
|
#pragma unroll
|
|
|
|
|
for (int r = 0; r < repeats; r++) {
|
|
|
|
|
size_t offset = w + (r * BLOCK_W + threadIdx.y) * width;
|
|
|
|
|
#pragma unroll
|
|
|
|
|
for (size_t h = threadIdx.y + r * BLOCK_W; h < full_height;
|
|
|
|
|
h += BLOCK_H) { // block-stride loop across matrix height
|
|
|
|
|
sdata[r * BLOCK_W + threadIdx.y][threadIdx.x] +=
|
|
|
|
|
(w < width && h < height)
|
|
|
|
|
? in[offset]
|
|
|
|
|
: (static_cast<paddle::platform::float16>(0));
|
|
|
|
|
offset += width * BLOCK_H;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
paddle::platform::float16 result =
|
|
|
|
|
static_cast<paddle::platform::float16>(0);
|
|
|
|
|
for (int r = 0; r < repeats; r++) {
|
|
|
|
|
paddle::platform::float16 val =
|
|
|
|
|
sdata[threadIdx.x + r * BLOCK_W][threadIdx.y];
|
|
|
|
|
for (int i = warpSize >> 1; i > 0; i >>= 1)
|
|
|
|
|
val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);
|
|
|
|
|
__syncthreads();
|
|
|
|
|
result += val;
|
|
|
|
|
}
|
|
|
|
|
if (threadIdx.x == 0) sdata[0][threadIdx.y] = result;
|
|
|
|
|
__syncthreads();
|
|
|
|
|
if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void MatrixReduceLongWidth(const T *__restrict__ in, T *out,
|
|
|
|
|
size_t width, size_t height) {
|
|
|
|
@ -390,21 +341,6 @@ class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
|
|
|
|
|
int max_blocks = std::max(max_physical_threads / (block_x * block_y), 1);
|
|
|
|
|
int theory_block = (width + blocks.x - 1) / blocks.x;
|
|
|
|
|
dim3 grids(std::min(theory_block, max_blocks));
|
|
|
|
|
if (std::is_same<T, paddle::platform::float16>::value &&
|
|
|
|
|
(width / height) < 32) {
|
|
|
|
|
const paddle::platform::float16 *ptr1 =
|
|
|
|
|
reinterpret_cast<const paddle::platform::float16 *>(dout_data);
|
|
|
|
|
paddle::platform::float16 *ptr2 =
|
|
|
|
|
reinterpret_cast<paddle::platform::float16 *>(out_data);
|
|
|
|
|
if (height <= 32) {
|
|
|
|
|
FP16MatrixColReduce<32, 32><<<grids, blocks, 0, stream>>>(
|
|
|
|
|
ptr1, ptr2, width, height);
|
|
|
|
|
} else {
|
|
|
|
|
FP16MatrixColReduce<32, 64><<<grids, blocks, 0, stream>>>(
|
|
|
|
|
ptr1, ptr2, width, height);
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (width / height < 32) {
|
|
|
|
|
MatrixColReduce<T, block_x, block_y><<<grids, blocks, 0, stream>>>(
|
|
|
|
|