1. support channel last in BatchNorm*d (#27875) 2. fix a bug in batch_norm_op cuda kernel by extracting ResizeToChannelFist(Last), TransToChannelFirst(Last) to operators/layer_utils.hswt-req
parent
947b75284f
commit
2e845182d9
@ -0,0 +1,155 @@
|
||||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/eigen.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
|
||||
const Tensor* input,
|
||||
Tensor* transformed_input) {
|
||||
int dim = input->dims().size() - 2;
|
||||
if (dim == 3) {
|
||||
// input
|
||||
transformed_input->Resize(input->dims());
|
||||
|
||||
auto in_dims_vec = framework::vectorize(input->dims());
|
||||
in_dims_vec[1] = input->dims()[4];
|
||||
in_dims_vec[2] = input->dims()[1];
|
||||
in_dims_vec[3] = input->dims()[2];
|
||||
in_dims_vec[4] = input->dims()[3];
|
||||
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
||||
transformed_input->mutable_data<T>(context.GetPlace());
|
||||
|
||||
} else if (dim == 2) {
|
||||
// input
|
||||
transformed_input->Resize(input->dims());
|
||||
|
||||
auto in_dims_vec = framework::vectorize(input->dims());
|
||||
in_dims_vec[1] = input->dims()[3];
|
||||
in_dims_vec[2] = input->dims()[1];
|
||||
in_dims_vec[3] = input->dims()[2];
|
||||
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
||||
transformed_input->mutable_data<T>(context.GetPlace());
|
||||
} else if (dim == 1) {
|
||||
transformed_input->Resize(input->dims());
|
||||
|
||||
auto in_dims_vec = framework::vectorize(input->dims());
|
||||
in_dims_vec[1] = input->dims()[2];
|
||||
in_dims_vec[2] = input->dims()[1];
|
||||
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
||||
transformed_input->mutable_data<T>(context.GetPlace());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
inline void ResizeToChannelLast(const framework::ExecutionContext& context,
|
||||
const Tensor* input,
|
||||
Tensor* transformed_input) {
|
||||
int dim = input->dims().size() - 2;
|
||||
if (dim == 3) {
|
||||
// input
|
||||
transformed_input->Resize(input->dims());
|
||||
|
||||
auto in_dims_vec = framework::vectorize(input->dims());
|
||||
in_dims_vec[1] = input->dims()[2];
|
||||
in_dims_vec[2] = input->dims()[3];
|
||||
in_dims_vec[3] = input->dims()[4];
|
||||
in_dims_vec[4] = input->dims()[1];
|
||||
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
||||
transformed_input->mutable_data<T>(context.GetPlace());
|
||||
|
||||
} else if (dim == 2) {
|
||||
// input
|
||||
transformed_input->Resize(input->dims());
|
||||
|
||||
auto in_dims_vec = framework::vectorize(input->dims());
|
||||
in_dims_vec[1] = input->dims()[2];
|
||||
in_dims_vec[2] = input->dims()[3];
|
||||
in_dims_vec[3] = input->dims()[1];
|
||||
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
||||
transformed_input->mutable_data<T>(context.GetPlace());
|
||||
} else if (dim == 1) {
|
||||
transformed_input->Resize(input->dims());
|
||||
|
||||
auto in_dims_vec = framework::vectorize(input->dims());
|
||||
in_dims_vec[1] = input->dims()[2];
|
||||
in_dims_vec[2] = input->dims()[1];
|
||||
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
||||
transformed_input->mutable_data<T>(context.GetPlace());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
inline void TransToChannelFirst(const framework::ExecutionContext& context,
|
||||
const Tensor* input,
|
||||
Tensor* transformed_input) {
|
||||
VLOG(5) << "Why am I called?";
|
||||
int dim = input->dims().size() - 2;
|
||||
if (dim == 3) {
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
std::vector<int> axis{0, 4, 1, 2, 3};
|
||||
math::Transpose<DeviceContext, T, 5> trans5;
|
||||
trans5(dev_ctx, *input, transformed_input, axis);
|
||||
|
||||
} else if (dim == 2) {
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
std::vector<int> axis{0, 3, 1, 2};
|
||||
math::Transpose<DeviceContext, T, 4> trans4;
|
||||
trans4(dev_ctx, *input, transformed_input, axis);
|
||||
} else if (dim == 1) {
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
std::vector<int> axis{0, 2, 1};
|
||||
math::Transpose<DeviceContext, T, 3> trans3;
|
||||
trans3(dev_ctx, *input, transformed_input, axis);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
inline void TransToChannelLast(const framework::ExecutionContext& context,
|
||||
const Tensor* input, Tensor* transformed_input) {
|
||||
int dim = input->dims().size() - 2;
|
||||
if (dim == 3) {
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
std::vector<int> axis{0, 2, 3, 4, 1};
|
||||
math::Transpose<DeviceContext, T, 5> trans5;
|
||||
trans5(dev_ctx, *input, transformed_input, axis);
|
||||
|
||||
} else if (dim == 2) {
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
std::vector<int> axis{0, 2, 3, 1};
|
||||
math::Transpose<DeviceContext, T, 4> trans4;
|
||||
trans4(dev_ctx, *input, transformed_input, axis);
|
||||
} else if (dim == 1) {
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
std::vector<int> axis{0, 2, 1};
|
||||
math::Transpose<DeviceContext, T, 3> trans3;
|
||||
trans3(dev_ctx, *input, transformed_input, axis);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Loading…
Reference in new issue