parent
376c948e88
commit
2f0df56422
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,76 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <glog/logging.h>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/contrib/inference/paddle_inference_api.h"
|
||||
|
||||
#include "paddle/fluid/framework/ddim.h"
|
||||
#include "paddle/fluid/framework/init.h"
|
||||
#include "paddle/fluid/framework/lod_tensor.h"
|
||||
#include "paddle/fluid/inference/io.h"
|
||||
#include "paddle/fluid/platform/profiler.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
struct VisConfig : public PaddlePredictor::Config {
|
||||
int device;
|
||||
float fraction_of_gpu_memory;
|
||||
std::string prog_file;
|
||||
std::string param_file;
|
||||
bool share_variables;
|
||||
};
|
||||
|
||||
/*
|
||||
* Do not use this, just a demo indicating how to customize a Predictor.
|
||||
*/
|
||||
class PaddlePredictorImpl : public PaddlePredictor {
|
||||
public:
|
||||
explicit PaddlePredictorImpl(const VisConfig &config) : config_(config) {}
|
||||
|
||||
bool Init();
|
||||
|
||||
bool Run(const std::vector<PaddleTensor> &inputs,
|
||||
std::vector<PaddleTensor> *output_data) override;
|
||||
|
||||
std::unique_ptr<PaddlePredictor> Clone() override;
|
||||
|
||||
~PaddlePredictorImpl() override{};
|
||||
|
||||
private:
|
||||
bool InitShared(PaddlePredictorImpl *cls);
|
||||
bool SetFeed(const std::vector<PaddleTensor> &input_datas,
|
||||
std::vector<paddle::framework::LoDTensor> *feeds);
|
||||
bool GetFetch(const std::vector<paddle::framework::LoDTensor> &fetchs,
|
||||
std::vector<PaddleTensor> *output_data);
|
||||
|
||||
VisConfig config_;
|
||||
paddle::platform::Place place_;
|
||||
std::unique_ptr<paddle::framework::Executor> executor_;
|
||||
std::unique_ptr<paddle::framework::Scope> scope_;
|
||||
std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx_;
|
||||
std::unique_ptr<paddle::framework::ProgramDesc> inference_program_;
|
||||
std::vector<std::string> feed_target_names_;
|
||||
std::vector<std::string> fetch_target_names_;
|
||||
};
|
||||
|
||||
std::unique_ptr<PaddlePredictorImpl> CreatePaddlePredictorImpl(
|
||||
const VisConfig &config);
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,83 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <glog/logging.h>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include "gflags/gflags.h"
|
||||
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
|
||||
#include "paddle/fluid/inference/tests/test_helper.h"
|
||||
|
||||
DEFINE_string(dirname, "", "Directory of the inference model.");
|
||||
|
||||
namespace paddle {
|
||||
|
||||
PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
|
||||
PaddleTensor pt;
|
||||
pt.data.data = t->data<void>();
|
||||
|
||||
if (t->type() == typeid(int64_t)) {
|
||||
pt.data.length = t->numel() * sizeof(int64_t);
|
||||
pt.dtype = PaddleDType::INT64;
|
||||
} else if (t->type() == typeid(float)) {
|
||||
pt.data.length = t->numel() * sizeof(float);
|
||||
pt.dtype = PaddleDType::FLOAT32;
|
||||
} else {
|
||||
LOG(FATAL) << "unsupported type.";
|
||||
}
|
||||
pt.shape = framework::vectorize2int(t->dims());
|
||||
return pt;
|
||||
}
|
||||
|
||||
TEST(paddle_inference_api_impl, word2vec) {
|
||||
VisConfig config;
|
||||
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
|
||||
LOG(INFO) << "dirname " << config.model_dir;
|
||||
config.fraction_of_gpu_memory = 0.85;
|
||||
config.device = 0;
|
||||
config.share_variables = true;
|
||||
|
||||
std::unique_ptr<PaddlePredictorImpl> predictor =
|
||||
CreatePaddlePredictorImpl(config);
|
||||
|
||||
framework::LoDTensor first_word, second_word, third_word, fourth_word;
|
||||
framework::LoD lod{{0, 1}};
|
||||
int64_t dict_size = 2073; // The size of dictionary
|
||||
|
||||
SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
||||
SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
||||
SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
||||
SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
||||
|
||||
std::vector<PaddleTensor> cpu_feeds;
|
||||
cpu_feeds.push_back(LodTensorToPaddleTensor(&first_word));
|
||||
cpu_feeds.push_back(LodTensorToPaddleTensor(&second_word));
|
||||
cpu_feeds.push_back(LodTensorToPaddleTensor(&third_word));
|
||||
cpu_feeds.push_back(LodTensorToPaddleTensor(&fourth_word));
|
||||
|
||||
std::vector<PaddleTensor> outputs;
|
||||
ASSERT_TRUE(predictor->Run(cpu_feeds, &outputs));
|
||||
ASSERT_EQ(outputs.size(), 1);
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t len = outputs[i].data.length;
|
||||
float* data = static_cast<float*>(outputs[i].data.data);
|
||||
for (int j = 0; j < len / sizeof(float); ++j) {
|
||||
ASSERT_LT(data[j], 1.0);
|
||||
ASSERT_GT(data[j], -1.0);
|
||||
}
|
||||
free(outputs[i].data.data);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue