|
|
|
@ -29,17 +29,20 @@ dtype_to_size = {
|
|
|
|
|
core.VarDesc.VarType.BOOL: 1
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
sub_block_ops = [
|
|
|
|
|
SUB_BLOCK_OPS = [
|
|
|
|
|
"while", "while_grad", "parallel_do", "parallel_do_grad",
|
|
|
|
|
"conditional_block", "conditional_block_grad"
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
SUB_BLOCK_PAIR = [("while", "while_grad"), ("parallel_do", "parallel_do_grad"),
|
|
|
|
|
("conditional_block", "conditional_block_grad")]
|
|
|
|
|
|
|
|
|
|
PRINT_LOG = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ControlFlowGraph(object):
|
|
|
|
|
def __init__(self, Program, ops, forward_num, skip_opt):
|
|
|
|
|
self._program = Program
|
|
|
|
|
def __init__(self, program, ops, forward_num, skip_opt):
|
|
|
|
|
self._program = program
|
|
|
|
|
self._ops = ops
|
|
|
|
|
self._forward_num = forward_num
|
|
|
|
|
self._successors = defaultdict(set)
|
|
|
|
@ -51,6 +54,7 @@ class ControlFlowGraph(object):
|
|
|
|
|
self._skip_opt = skip_opt
|
|
|
|
|
|
|
|
|
|
def _add_connections(self, connections):
|
|
|
|
|
"""Populates _successors and _presuccessors for two neighbor nodes."""
|
|
|
|
|
for node1, node2 in connections:
|
|
|
|
|
self._add(node1, node2)
|
|
|
|
|
|
|
|
|
@ -58,7 +62,11 @@ class ControlFlowGraph(object):
|
|
|
|
|
self._successors[node1].add(node2)
|
|
|
|
|
self._presuccessors[node2].add(node1)
|
|
|
|
|
|
|
|
|
|
# TODO(panyx0718): We need to have a unified way of building intermediate
|
|
|
|
|
# representation.
|
|
|
|
|
def _build_graph(self):
|
|
|
|
|
"""Build a graph based on op sequence.
|
|
|
|
|
"""
|
|
|
|
|
self.op_size = len(self._ops)
|
|
|
|
|
op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)]
|
|
|
|
|
self._add_connections(op_node_connections)
|
|
|
|
@ -82,15 +90,14 @@ class ControlFlowGraph(object):
|
|
|
|
|
self._live_out[i].add(new_name)
|
|
|
|
|
|
|
|
|
|
def _reach_fixed_point(self, live_in, live_out):
|
|
|
|
|
"""Check if the liveness set has stablized."""
|
|
|
|
|
if len(live_in) != len(self._live_in):
|
|
|
|
|
return False
|
|
|
|
|
if len(live_out) != len(self._live_out):
|
|
|
|
|
return False
|
|
|
|
|
for i in range(self.op_size):
|
|
|
|
|
if live_in[i] != self._live_in[i]:
|
|
|
|
|
return False
|
|
|
|
|
for i in range(self.op_size):
|
|
|
|
|
if live_out[i] != self._live_out[i]:
|
|
|
|
|
if (live_in[i] != self._live_in[i] or
|
|
|
|
|
live_out[i] != self._live_out[i]):
|
|
|
|
|
return False
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
@ -98,6 +105,8 @@ class ControlFlowGraph(object):
|
|
|
|
|
self._build_graph()
|
|
|
|
|
live_in = defaultdict(set)
|
|
|
|
|
live_out = defaultdict(set)
|
|
|
|
|
# Repeatedly apply liveness updates until the algorithm stablize
|
|
|
|
|
# on a complete set live input vars and live output vars.
|
|
|
|
|
while True:
|
|
|
|
|
for i in range(self.op_size, 0, -1):
|
|
|
|
|
live_in[i] = set(self._live_in[i])
|
|
|
|
@ -141,6 +150,8 @@ class ControlFlowGraph(object):
|
|
|
|
|
return False
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
# TODO(panyx0718): This needs to be less hacky. It seems memory optimization
|
|
|
|
|
# doesn't consider vars copied between cpu and gpu.
|
|
|
|
|
def _update_skip_opt_set(self):
|
|
|
|
|
for i in range(self.op_size):
|
|
|
|
|
op = self._ops[i]
|
|
|
|
@ -154,7 +165,7 @@ class ControlFlowGraph(object):
|
|
|
|
|
bwd_id = 0
|
|
|
|
|
for i in range(self.op_size):
|
|
|
|
|
op = self._ops[i]
|
|
|
|
|
if op.type() in sub_block_ops:
|
|
|
|
|
if op.type() in SUB_BLOCK_OPS:
|
|
|
|
|
continue
|
|
|
|
|
block_desc = op.block()
|
|
|
|
|
is_forward = i < self._forward_num
|
|
|
|
@ -177,13 +188,15 @@ class ControlFlowGraph(object):
|
|
|
|
|
def compare_shape(x_shape, cache_shape, opt_level):
|
|
|
|
|
if opt_level == 0:
|
|
|
|
|
return x_shape == cache_shape
|
|
|
|
|
if opt_level == 1:
|
|
|
|
|
elif opt_level == 1:
|
|
|
|
|
if (x_shape[0] == -1) ^ (cache_shape[0] == -1):
|
|
|
|
|
return False
|
|
|
|
|
x_size = abs(reduce(lambda x, y: x * y, x_shape))
|
|
|
|
|
cache_size = abs(reduce(lambda x, y: x * y, cache_shape))
|
|
|
|
|
if x_size <= cache_size:
|
|
|
|
|
return True
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError("only support opt_level 0 or 1.")
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
self._dataflow_analyze()
|
|
|
|
@ -191,10 +204,9 @@ class ControlFlowGraph(object):
|
|
|
|
|
self.pool = []
|
|
|
|
|
for i in range(self.op_size):
|
|
|
|
|
op = self._ops[i]
|
|
|
|
|
if op.type() in sub_block_ops:
|
|
|
|
|
if op.type() in SUB_BLOCK_OPS:
|
|
|
|
|
continue
|
|
|
|
|
block_desc = op.block()
|
|
|
|
|
self.current_block_desc = block_desc
|
|
|
|
|
is_forward = i < self._forward_num
|
|
|
|
|
if self.pool:
|
|
|
|
|
defs_can_optimize = filter(
|
|
|
|
@ -211,37 +223,40 @@ class ControlFlowGraph(object):
|
|
|
|
|
for index, cache_pair in enumerate(self.pool):
|
|
|
|
|
cache_var = cache_pair[0]
|
|
|
|
|
cache_shape = cache_pair[1]
|
|
|
|
|
if compare_shape(x_shape, cache_shape, level):
|
|
|
|
|
if self._has_var(block_desc, cache_var, is_forward):
|
|
|
|
|
x_dtype = self._find_var(block_desc, x,
|
|
|
|
|
is_forward).dtype()
|
|
|
|
|
cache_dtype = self._find_var(
|
|
|
|
|
block_desc, cache_var, is_forward).dtype()
|
|
|
|
|
# TODO(qijun): actually, we should compare dtype_to_size[x_dtype]
|
|
|
|
|
# and dtype_to_size[cache_dtype]
|
|
|
|
|
if x_dtype == cache_dtype:
|
|
|
|
|
if PRINT_LOG:
|
|
|
|
|
print(
|
|
|
|
|
("Hit Cache !!!! cache pool index "
|
|
|
|
|
"is %d, var name is %s, "
|
|
|
|
|
"cached var name is %s, "
|
|
|
|
|
"var shape is %s ") %
|
|
|
|
|
(index, x, cache_var,
|
|
|
|
|
str(cache_shape)))
|
|
|
|
|
self.pool.pop(index)
|
|
|
|
|
if x == cache_var:
|
|
|
|
|
break
|
|
|
|
|
_rename_arg_(
|
|
|
|
|
self._ops, x, cache_var, begin_idx=i)
|
|
|
|
|
self._program.block(block_desc.id).var(
|
|
|
|
|
str(x)).desc = self._find_var(
|
|
|
|
|
block_desc, cache_var, is_forward)
|
|
|
|
|
self._update_graph(
|
|
|
|
|
x, cache_var, begin_idx=i)
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
in_diff, out_diff = self._get_diff(self._live_in[i],
|
|
|
|
|
self._live_out[i])
|
|
|
|
|
if not compare_shape(x_shape, cache_shape, level):
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
if not self._has_var(block_desc, cache_var, is_forward):
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
x_dtype = self._find_var(block_desc, x,
|
|
|
|
|
is_forward).dtype()
|
|
|
|
|
cache_dtype = self._find_var(block_desc, cache_var,
|
|
|
|
|
is_forward).dtype()
|
|
|
|
|
# TODO(qijun): actually, we should compare
|
|
|
|
|
# dtype_to_size[x_dtype] and dtype_to_size[cache_dtype]
|
|
|
|
|
if x_dtype != cache_dtype:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
if PRINT_LOG:
|
|
|
|
|
print(("Hit Cache !!!! cache pool index "
|
|
|
|
|
"is %d, var name is %s, "
|
|
|
|
|
"cached var name is %s, "
|
|
|
|
|
"var shape is %s ") % (index, x, cache_var,
|
|
|
|
|
str(cache_shape)))
|
|
|
|
|
self.pool.pop(index)
|
|
|
|
|
if x == cache_var:
|
|
|
|
|
break
|
|
|
|
|
# Rename the var to the cache var already with
|
|
|
|
|
# memory allocated in order to reuse the memory.
|
|
|
|
|
_rename_arg_(self._ops, x, cache_var, begin_idx=i)
|
|
|
|
|
self._program.block(block_desc.id).var(str(
|
|
|
|
|
x)).desc = self._find_var(block_desc, cache_var,
|
|
|
|
|
is_forward)
|
|
|
|
|
self._update_graph(x, cache_var, begin_idx=i)
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
in_diff, _ = self._get_diff(self._live_in[i], self._live_out[i])
|
|
|
|
|
can_optimize = filter(
|
|
|
|
|
lambda x: self._check_var_validity(block_desc, x, is_forward),
|
|
|
|
|
in_diff)
|
|
|
|
@ -252,6 +267,19 @@ class ControlFlowGraph(object):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _process_sub_block_pair(pdesc, sub_block_pair):
|
|
|
|
|
"""Creates a list of tuple each of which tracks info of a subblock.
|
|
|
|
|
|
|
|
|
|
Note: this function doesn't handle nested subblocks yet.
|
|
|
|
|
TODO(panyx0718): assert if case nested subblocks happen.
|
|
|
|
|
|
|
|
|
|
:param pdesc: ProgramDesc.
|
|
|
|
|
:param sub_block_pair: A list op pairs. Each op pair is the forward
|
|
|
|
|
op and backward op. The ops in the list are special that they contain
|
|
|
|
|
a subblock of ops.
|
|
|
|
|
:return: A list of tuples, each tuple is (all ops in a subblock pair
|
|
|
|
|
including forward and backward, number of forward ops,
|
|
|
|
|
all output args names of the ops in the subblock pairs).
|
|
|
|
|
"""
|
|
|
|
|
ops_list = []
|
|
|
|
|
block_desc = pdesc.block(0)
|
|
|
|
|
op_size = block_desc.op_size()
|
|
|
|
@ -308,6 +336,11 @@ def _process_sub_block_pair(pdesc, sub_block_pair):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_cfgs(input_program):
|
|
|
|
|
"""Process each block and create ControlFlowGraph for each of them.
|
|
|
|
|
|
|
|
|
|
:param input_program: Program object.
|
|
|
|
|
:return: A list of ControlFlowGraph, each corresponds to a block.
|
|
|
|
|
"""
|
|
|
|
|
ops_list = []
|
|
|
|
|
pdesc = input_program.get_desc()
|
|
|
|
|
block_desc = pdesc.block(0)
|
|
|
|
@ -316,11 +349,8 @@ def _get_cfgs(input_program):
|
|
|
|
|
ops_list.append(
|
|
|
|
|
([block_desc.op(i) for i in range(op_size)], op_size, set()))
|
|
|
|
|
|
|
|
|
|
sub_block_pair = [("while", "while_grad"), ("parallel_do",
|
|
|
|
|
"parallel_do_grad"),
|
|
|
|
|
("conditional_block", "conditional_block_grad")]
|
|
|
|
|
|
|
|
|
|
ops_list.extend(_process_sub_block_pair(pdesc, sub_block_pair))
|
|
|
|
|
# Only process one level of nested subblock.
|
|
|
|
|
ops_list.extend(_process_sub_block_pair(pdesc, SUB_BLOCK_PAIR))
|
|
|
|
|
|
|
|
|
|
cfgs = [
|
|
|
|
|
ControlFlowGraph(input_program, ops, forward_num, skip_opt)
|
|
|
|
@ -330,6 +360,17 @@ def _get_cfgs(input_program):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def memory_optimize(input_program, print_log=False, level=0):
|
|
|
|
|
"""Optimize memory by reusing var memory.
|
|
|
|
|
|
|
|
|
|
Note: it doesn't not support subblock nested in subblock.
|
|
|
|
|
|
|
|
|
|
:param input_program: Input Program
|
|
|
|
|
:param print_log: whether to print debug log.
|
|
|
|
|
:param level: If level=0, reuse if the shape is completely equal, o
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
if level != 0 and level != 1:
|
|
|
|
|
raise ValueError("only support opt_level 0 or 1.")
|
|
|
|
|
global PRINT_LOG
|
|
|
|
|
PRINT_LOG = print_log
|
|
|
|
|
cfgs = _get_cfgs(input_program)
|
|
|
|
|