Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add-async-ssa-graph-executor

test=develop
mixed_precision_init
Qiao Longfei 6 years ago
commit 31a05d3efd

@ -427,7 +427,7 @@ paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learnin
paddle.fluid.optimizer.MomentumOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.MomentumOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(1e-06, None, None))
paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'regularization', 'name', 'initial_accumulator_value'], varargs=None, keywords=None, defaults=(1e-06, None, None, 0.0))
paddle.fluid.optimizer.AdagradOptimizer.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.AdagradOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))

@ -30,8 +30,6 @@ namespace paddle {
namespace framework {
namespace details {
static constexpr char kAllOpDescs[] = "all_op_descs";
VarHandle* GetValidInput(const OpHandleBase* a) {
for (auto p : a->Inputs()) {
VarHandle* b = dynamic_cast<VarHandle*>(p);

@ -53,7 +53,7 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
#endif
void AllReduceOpHandle::RunImpl() {
platform::RecordEvent record_event(Name(), dev_ctxes_.cbegin()->second);
platform::RecordEvent record_event(Name());
WaitInputVarGenerated();
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());

@ -22,7 +22,7 @@ namespace framework {
namespace details {
void BroadcastOpHandle::RunImpl() {
platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second);
platform::RecordEvent record_event(Name());
if (places_.size() == 1) return;

@ -34,9 +34,11 @@ namespace details {
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
// Should fix the allreduce op order if scheduling
// them in multiple threads or processes to avoid hang.
// NOTE: ParallelGraph would execute this pass on each graph, so
// don't need to append it here.
return (!strategy.enable_sequential_execution_ &&
strategy.num_trainers_ > 1) ||
strategy.enable_parallel_graph_;
strategy.num_trainers_ > 1) &&
!strategy.enable_parallel_graph_;
}
class ParallelExecutorPassBuilder : public ir::PassBuilder {

@ -22,7 +22,7 @@ namespace framework {
namespace details {
void FusedBroadcastOpHandle::RunImpl() {
platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second);
platform::RecordEvent record_event(Name());
if (places_.size() == 1UL) return;

@ -29,8 +29,6 @@ namespace paddle {
namespace framework {
namespace details {
constexpr char kAllOpDescs[] = "all_op_descs";
std::vector<ir::Node*> SortOpLikeDescOrder(const ir::Graph& graph);
// NOTE(dzh): A ordered set for node reuse in memory optimize.

@ -412,20 +412,32 @@ void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
ir::Graph *result, const std::string &og) const {
OpHandleBase *op_handle = nullptr;
auto append_allreduce_op = [&](
const std::vector<Scope *> &scopes,
const std::vector<platform::Place> &places) -> OpHandleBase * {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
local_scopes_, places_, nccl_ctxs_));
result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
scopes, places, nccl_ctxs_));
#else
result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
local_scopes_, places_));
result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
scopes, places));
#endif
auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
return result->Get<GraphOps>(kGraphOps).back();
};
if (!strategy_.enable_parallel_graph_)
op_handle = append_allreduce_op(local_scopes_, places_);
for (size_t i = 0; i < places_.size(); ++i) {
auto &p = places_[i];
SetCommunicationContext(op_handle, p);
if (strategy_.enable_parallel_graph_) {
op_handle = append_allreduce_op({local_scopes_[i]}, {places_[i]});
}
SetCommunicationContext(op_handle, places_[i]);
auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
PADDLE_ENFORCE(!vars.empty());
auto &prev_grad = vars.back();
@ -433,7 +445,7 @@ void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
auto var =
new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
vars.size(), i, og, p);
vars.size(), i, og, places_[i]);
vars.emplace_back(var);
op_handle->AddOutput(var);
}

@ -36,13 +36,14 @@ namespace details {
// map from variable name to variables. The variables, who have the same name,
// will have a differsent version. The offset in the
// `std::vector<VarHandle*>` is the version of varaibles.
typedef std::vector<std::unordered_map<std::string, std::vector<VarHandle*>>>
typedef std::vector<std::unordered_map<std::string, std::vector<VarHandle *>>>
GraphVars;
const char kGraphVars[] = "vars";
// aux variables to represent dependency. Useful to resolve data hazard.
typedef std::unordered_set<VarHandleBase*> GraphDepVars;
typedef std::unordered_set<VarHandleBase *> GraphDepVars;
const char kGraphDepVars[] = "dep_vars";
} // namespace details
} // namespace framework
} // namespace paddle

@ -70,6 +70,9 @@ class OpHandleBase {
auto it = dev_ctxes_.find(place);
return it != dev_ctxes_.end() ? it->second : nullptr;
}
const std::map<platform::Place, platform::DeviceContext *> &DeviceContext() {
return dev_ctxes_;
}
void SetDeviceContext(platform::Place place, platform::DeviceContext *ctx_) {
dev_ctxes_[place] = ctx_;

@ -13,22 +13,92 @@
// limitations under the License.
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle {
namespace framework {
namespace details {
std::vector<std::unique_ptr<ir::Graph>>
ParallelSSAGraphExecutor::SeparateMultiDevicesGraph(
std::unique_ptr<ir::Graph> &&graph) {
std::vector<std::unique_ptr<ir::Graph>> graphs;
graphs.reserve(places_.size());
for (size_t i = 0; i < places_.size(); ++i) {
ProgramDesc empty;
graphs.emplace_back(std::unique_ptr<ir::Graph>(new ir::Graph(empty)));
auto &g = graphs.back();
g->Set(kGraphVars, new GraphVars(1UL));
g->Set(kGraphDepVars, new GraphDepVars);
}
auto op_handles = ir::FilterByNodeWrapper<OpHandleBase>(*graph);
for (auto &op : op_handles) {
auto &dev_ctx = op->DeviceContext();
auto &p = dev_ctx.begin()->first;
int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &dev_dummys = graphs[dev_id]->Get<GraphDepVars>(kGraphDepVars);
graphs[dev_id]->AddNode(graph->RemoveNode(op->Node()).release());
for (auto &var : op->Inputs()) {
auto dummy_ptr = dynamic_cast<DummyVarHandle *>(var);
if (dummy_ptr) {
dev_dummys.insert(var);
if (graph->Nodes().count(var->Node()))
graphs[dev_id]->AddNode(graph->RemoveNode(var->Node()).release());
}
}
for (auto &var : op->Outputs()) {
auto dummy_ptr = dynamic_cast<DummyVarHandle *>(var);
if (dummy_ptr) {
dev_dummys.insert(var);
if (graph->Nodes().count(var->Node()))
graphs[dev_id]->AddNode(graph->RemoveNode(var->Node()).release());
}
}
}
for (size_t dev_id = 0; dev_id < places_.size(); ++dev_id) {
auto &dev_vars = graphs[dev_id]->Get<GraphVars>(kGraphVars)[0];
auto &origin_vars = graph->Get<GraphVars>(kGraphVars)[dev_id];
for (auto &name_pair : origin_vars) {
dev_vars.emplace(name_pair.first, name_pair.second);
for (auto &version_pair : name_pair.second) {
if (graph->Nodes().count(version_pair->Node())) {
graphs[dev_id]->AddNode(
graph->RemoveNode(version_pair->Node()).release());
}
}
}
}
return graphs;
}
ParallelSSAGraphExecutor::ParallelSSAGraphExecutor(
const ExecutionStrategy &strategy, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
std::vector<std::unique_ptr<ir::Graph>> &&graphs)
const framework::ProgramDesc &main_prog, std::unique_ptr<ir::Graph> &&graph)
: strategy_(std::move(strategy)),
local_scopes_(std::move(local_scopes)),
pool_(places.size() >= 2 ? new ::ThreadPool(places.size()) : nullptr),
places_(std::move(places)),
graphs_(std::move(graphs)) {
main_prog_(main_prog),
// TODO(Yancey1989): Copying graphs is not safely since it deleted the
// attrs.
graphs_(SeparateMultiDevicesGraph(std::move(graph))) {
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
auto seq_allreduce_pass =
ir::PassRegistry::Instance().Get("all_reduce_deps_pass");
seq_allreduce_pass->Erase(details::kAllOpDescs);
seq_allreduce_pass->Set<const std::vector<OpDesc *>>(
details::kAllOpDescs,
new std::vector<OpDesc *>(main_prog_.Block(0).AllOps()));
for (size_t i = 0; i < graphs_.size(); ++i) {
graphs_[i] = seq_allreduce_pass->Apply(std::move(graphs_[i]));
}
// set the correct size of thread pool to each device.
strategy_.num_threads_ = strategy_.num_threads_ < places_.size()
? 1UL
@ -37,7 +107,7 @@ ParallelSSAGraphExecutor::ParallelSSAGraphExecutor(
<< " to run the operators of the graph on each device.";
for (size_t i = 0; i < places.size(); ++i) {
executors_.emplace_back(new details::ThreadedSSAGraphExecutor(
strategy_, {local_scopes_[i]}, {places_[i]}, std::move(graphs_[i])));
strategy_, local_scopes_, {places_[i]}, std::move(graphs_.at(i))));
}
}

@ -18,7 +18,9 @@
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace paddle {
namespace framework {
@ -29,17 +31,23 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
ParallelSSAGraphExecutor(const ExecutionStrategy &strategy,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
std::vector<std::unique_ptr<ir::Graph>> &&graphs);
const framework::ProgramDesc &main_prog,
std::unique_ptr<ir::Graph> &&graph);
~ParallelSSAGraphExecutor() final = default;
const ir::Graph &Graph() const override { return *graphs_[0]; }
FeedFetchList Run(const std::vector<std::string> &fetch_tensors) override;
private:
std::vector<std::unique_ptr<ir::Graph>> SeparateMultiDevicesGraph(
std::unique_ptr<ir::Graph> &&graph);
ExecutionStrategy strategy_;
std::vector<Scope *> local_scopes_;
std::unique_ptr<::ThreadPool> pool_{nullptr};
std::vector<platform::Place> places_;
framework::ProgramDesc main_prog_;
std::vector<std::unique_ptr<ir::Graph>> graphs_;
std::vector<std::unique_ptr<details::ThreadedSSAGraphExecutor>> executors_;

@ -139,7 +139,7 @@ void ReduceOpHandle::GatherSelectedRows(
#endif
void ReduceOpHandle::RunImpl() {
platform::RecordEvent record_event(Name(), dev_ctxes_.cbegin()->second);
platform::RecordEvent record_event(Name());
if (places_.size() == 1) return;
// the input and output may have dummy var.

@ -63,7 +63,7 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
eptr = std::current_exception();
}
platform::RecordEvent e("ScopeBufferedSSAGraphExecutorAfterRun", nullptr);
platform::RecordEvent e("ScopeBufferedSSAGraphExecutorAfterRun");
++drop_scope_counter_;
bool stream_end = false;

@ -50,7 +50,7 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
inline FeedFetchList ThreadedSSAGraphExecutor::RunImpl(
const std::vector<std::string> &fetch_tensors) {
std::unique_ptr<platform::RecordEvent> event(
new platform::RecordEvent("ThreadedSSAGraphExecutorPrepare", nullptr));
new platform::RecordEvent("ThreadedSSAGraphExecutorPrepare"));
std::unordered_map<OpHandleBase *, size_t> pending_ops;
std::unordered_set<VarHandleBase *> pending_vars;
auto ready_vars = std::make_shared<BlockingQueue<VarHandleBase *>>();
@ -240,7 +240,7 @@ void ThreadedSSAGraphExecutor::RunOp(
VLOG(10) << op << " " << op->Name() << " Done ";
running_ops_--;
ready_var_q->Extend(op->Outputs());
VLOG(10) << op << " " << op->Name() << "Signal posted";
VLOG(10) << op << " " << op->Name() << " Signal posted";
} catch (...) {
exception_holder_.Catch(std::current_exception());
}

@ -26,6 +26,14 @@ limitations under the License. */
namespace paddle {
namespace framework {
namespace details {
// This attr is not recommended, because the graph should not dependence
// the program once it is built.
constexpr char kAllOpDescs[] = "all_op_descs";
} // namespace details
namespace ir {
/*
@ -168,10 +176,13 @@ class Graph {
return ret;
}
void RemoveNode(ir::Node *node) {
std::unique_ptr<ir::Node> RemoveNode(ir::Node *node) {
PADDLE_ENFORCE(node_set_.find(node) != node_set_.end());
node_set_.erase(node);
std::unique_ptr<ir::Node> ret;
ret.reset(nodes_.at(node).release());
nodes_.erase(node);
node_set_.erase(node);
return ret;
}
// NOTE low performance, but simple and secure.
@ -184,13 +195,6 @@ class Graph {
return nullptr;
}
void ResolveHazard(
const std::map<std::string, std::vector<ir::Node *>> &var_nodes);
private:
std::map<std::string, std::vector<ir::Node *>> InitFromProgram(
const ProgramDesc &program);
// This method takes ownership of `node`.
ir::Node *AddNode(ir::Node *node) {
PADDLE_ENFORCE(node_set_.find(node) == node_set_.end());
@ -199,6 +203,13 @@ class Graph {
return node;
}
void ResolveHazard(
const std::map<std::string, std::vector<ir::Node *>> &var_nodes);
private:
std::map<std::string, std::vector<ir::Node *>> InitFromProgram(
const ProgramDesc &program);
// NOTE: program_ shouldn't be exposed to user.
const ProgramDesc program_;
std::map<std::string, boost::any> attrs_;

@ -177,9 +177,7 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
// in concurrency scenerio. Here use an `if` to fix this issue.
// Please not remove the `if`, ask @Superjomn if there are any concern.
if (platform::IsProfileEnabled()) {
platform::DeviceContextPool& pool =
platform::DeviceContextPool::Instance();
platform::RecordEvent record_event(Type(), pool.Get(place));
platform::RecordEvent record_event(Type());
RunImpl(scope, place);
} else {
RunImpl(scope, place);

@ -22,6 +22,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
@ -194,7 +195,6 @@ ParallelExecutor::ParallelExecutor(
member_->use_all_reduce_ =
build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
member_->nranks_ = build_strategy.num_trainers_ * places.size();
if (!member_->use_all_reduce_) {
PADDLE_ENFORCE(places.size() > 1,
"If you set build_strategy.reduce with 'Reduce',"
@ -222,9 +222,10 @@ ParallelExecutor::ParallelExecutor(
// choice the execution strategy.
build_strategy.enable_parallel_graph_ =
EnableParallelGraphExecution(main_program, exec_strategy, build_strategy);
VLOG(1) << "Enable ParallelGraph Execution: "
<< build_strategy.enable_parallel_graph_;
if (build_strategy.enable_parallel_graph_)
VLOG(0) << "The Executor would execute the graph by ParallelGraph "
"Execution which can get better performance,"
<< "you can force it off by env FLAGS_enable_parallel_graph=0";
if (member_->use_cuda_) {
// Bcast Parameters to all GPUs
@ -258,22 +259,11 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
std::vector<std::unique_ptr<ir::Graph>> graphs;
std::unique_ptr<ir::Graph> graph;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if (build_strategy.enable_parallel_graph_) {
for (size_t i = 0; i < member_->places_.size(); ++i) {
std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
main_program, {member_->places_[i]}, loss_var_name,
{member_->local_scopes_[i]}, member_->nranks_, member_->use_cuda_,
member_->nccl_ctxs_.get());
graphs.push_back(std::move(graph));
}
} else {
std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
main_program, member_->places_, loss_var_name, member_->local_scopes_,
member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_.get());
graphs.push_back(std::move(graph));
}
graph = build_strategy.Apply(main_program, member_->places_, loss_var_name,
member_->local_scopes_, member_->nranks_,
member_->use_cuda_, member_->nccl_ctxs_.get());
#else
if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
for (size_t i = 0; i < member_->places_.size(); ++i) {
@ -293,40 +283,37 @@ ParallelExecutor::ParallelExecutor(
VLOG(10) << "Eager Deletion Threshold "
<< static_cast<float>(max_memory_size) / (1 << 30);
if (max_memory_size >= 0) {
for (size_t i = 0; i < graphs.size(); ++i) {
graphs[i] = member_->PrepareGCAndRefCnts(
std::move(graphs[i]), static_cast<size_t>(max_memory_size));
}
graph = member_->PrepareGCAndRefCnts(std::move(graph),
static_cast<size_t>(max_memory_size));
}
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std::vector<details::VariableInfo> var_infos;
for (auto &graph : graphs) {
for (auto &node : graph->Nodes()) {
if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
var_infos.emplace_back();
var_infos.back().name_ = node->Var()->Name();
var_infos.back().type_ = node->Var()->GetType();
var_infos.back().persistable_ = node->Var()->Persistable();
}
for (auto &node : graph->Nodes()) {
if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
var_infos.emplace_back();
var_infos.back().name_ = node->Var()->Name();
var_infos.back().type_ = node->Var()->GetType();
var_infos.back().persistable_ = node->Var()->Persistable();
}
}
// If the loss_var_name is given, the number of graph should be only one.
if (loss_var_name.size()) {
size_t graph_num = ir::GraphNum(*graphs[0]);
size_t graph_num = ir::GraphNum(*graph);
if (graph_num > 1) {
LOG(WARNING)
<< "The number of graph should be only one, "
"but the current graph has "
<< ir::GraphNum(*graphs[0])
<< ir::GraphNum(*graph)
<< " sub_graphs. If you want to see the nodes of the "
"sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
"to specify the output dir. NOTES: if you not do training, "
"please don't pass loss_var_name.";
}
}
if (build_strategy.async_mode_ && !build_strategy.is_distribution_) {
VLOG(3) << "use AsyncSSAGraphExecutor";
member_->executor_.reset(new details::AsyncSSAGraphExecutor(
@ -334,20 +321,27 @@ ParallelExecutor::ParallelExecutor(
std::move(graphs)));
} else if (build_strategy.enable_parallel_graph_) {
VLOG(3) << "use ParallelSSAGraphExecutor";
#ifdef PADDLE_WITH_CUDA
// TODO(Yancey1989): Remove passing in the main_program when
// allreduce_seq_pass doesn't need it as the attr.
member_->executor_.reset(new details::ParallelSSAGraphExecutor(
exec_strategy, member_->local_scopes_, member_->places_,
std::move(graphs)));
exec_strategy, member_->local_scopes_, member_->places_, main_program,
std::move(graph)));
#else
PADDLE_THROW(
"Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
} else {
if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
VLOG(3) << "use ThreadedSSAGraphExecutor";
member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
exec_strategy, member_->local_scopes_, member_->places_,
std::move(graphs[0])));
std::move(graph)));
} else {
VLOG(3) << "use FastThreadedSSAGraphExecutor";
member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
exec_strategy, member_->local_scopes_, member_->places_,
std::move(graphs[0])));
std::move(graph)));
}
}
@ -509,11 +503,10 @@ bool ParallelExecutor::EnableParallelGraphExecution(
}
if (!member_->use_all_reduce_ || !member_->use_cuda_)
enable_parallel_graph = false;
if (build_strategy.enable_sequential_execution_ ||
exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
enable_parallel_graph = false;
if (build_strategy.enable_sequential_execution_ ||
exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
enable_parallel_graph = false;
return enable_parallel_graph;
}

@ -171,9 +171,7 @@ void TestInference(const std::string& dirname,
// Enable the profiler
paddle::platform::EnableProfiler(state);
{
paddle::platform::RecordEvent record_event(
"init_program",
paddle::platform::DeviceContextPool::Instance().Get(place));
paddle::platform::RecordEvent record_event("init_program");
inference_program = InitProgram(&executor, scope, dirname, is_combined);
}
@ -230,9 +228,7 @@ void TestInference(const std::string& dirname,
// Run repeat times to profile the performance
for (int i = 0; i < repeat; ++i) {
paddle::platform::RecordEvent record_event(
"run_inference",
paddle::platform::DeviceContextPool::Instance().Get(place));
paddle::platform::RecordEvent record_event("run_inference");
if (PrepareContext) {
// Note: if you change the inference_program, you need to call

@ -356,7 +356,7 @@ void MemInfo::Minus(const size_t &size) {
usage_ -= size;
}
uint64_t MemInfo::GetPeakUsage() { return peak_usage_; }
uint64_t MemInfo::GetPeakUsage() const { return peak_usage_; }
LegacyMemMonitor::~LegacyMemMonitor() {
for (auto &item : gpu_mem_info_) delete item.second;
@ -380,10 +380,10 @@ void LegacyMemMonitor::Minus(const int &device, const size_t &size) {
gpu_mem_info_[device]->Minus(size);
}
uint64_t LegacyMemMonitor::GetMemUsage(const int &device) {
uint64_t LegacyMemMonitor::GetMemUsage(const int &device) const {
return gpu_mem_info_.find(device) == gpu_mem_info_.end()
? 0
: gpu_mem_info_[device]->GetPeakUsage();
: gpu_mem_info_.at(device)->GetPeakUsage();
}
void LegacyMemMonitor::PrintMemUsage() {

@ -27,20 +27,20 @@ namespace allocation {
class MemInfo {
public:
MemInfo() : usage_(0), peak_usage_(0) {}
MemInfo(const MemInfo &) = delete;
MemInfo &operator=(const MemInfo &) = delete;
// return a flag to indicate current operation will create a peak point or not
bool Add(const size_t &);
void Minus(const size_t &);
uint64_t GetPeakUsage();
uint64_t GetPeakUsage() const;
private:
/* current memory usage*/
uint64_t usage_;
uint64_t peak_usage_;
std::mutex mutex_;
DISABLE_COPY_AND_ASSIGN(MemInfo);
};
class LegacyMemMonitor {
@ -56,11 +56,11 @@ class LegacyMemMonitor {
void Add(const int &, const size_t &);
void Minus(const int &, const size_t &);
uint64_t GetMemUsage(const int &);
uint64_t GetMemUsage(const int &) const;
void PrintMemUsage();
protected:
private:
MemUsage gpu_mem_info_;
};

@ -80,7 +80,7 @@ VarHandlePtr BRPCClient::AsyncSendVar(const std::string& ep,
google::protobuf::Closure* done = brpc::NewCallback(
&HandleSendResponse, cntl, response, var_h, ch_ptr, ch_ctx, this);
platform::RecordRPCEvent record_event(method, p_ctx);
platform::RecordRPCEvent record_event(method);
ch_ctx->stub->SendVariable(cntl, &request, response, done);
@ -184,7 +184,7 @@ VarHandlePtr BRPCClient::_AsyncGetVar(const std::string& ep,
google::protobuf::Closure* done = brpc::NewCallback(
&HandleGetResponse, cntl, response, var_h, ch_ptr, ch_ctx, this);
platform::RecordRPCEvent record_event(method, p_ctx);
platform::RecordRPCEvent record_event(method);
if (method_name == kGetMonomerRPC) {
ch_ctx->stub->GetMonomerVariable(cntl, &req, response, done);
@ -272,7 +272,7 @@ VarHandlePtr BRPCClient::AsyncPrefetchVar(const std::string& ep,
&cntl->request_attachment(), out_var_name_val,
false, 0, table_name_val);
platform::RecordRPCEvent record_event(method, p_ctx);
platform::RecordRPCEvent record_event(method);
google::protobuf::Closure* done = brpc::NewCallback(
&HandleGetResponse, cntl, response, var_h, ch_ptr, ch_ctx, this);
@ -311,7 +311,7 @@ VarHandlePtr BRPCClient::AsyncSendFetchBarrier(const std::string& ep,
VarHandlePtr var_h(
new VarHandle(ep, method, FETCH_BARRIER_MESSAGE, nullptr, nullptr));
platform::RecordRPCEvent record_event(method, nullptr);
platform::RecordRPCEvent record_event(method);
google::protobuf::Closure* done = brpc::NewCallback(
&HandleFetchBarrierResponse, cntl, response, var_h, ch_ptr, ch_ctx, this);
@ -406,7 +406,7 @@ VarHandlePtr BRPCClient::AsyncSendVarMessage(
sendrecv::VoidMessage* response = new sendrecv::VoidMessage();
cntl->set_timeout_ms(time_out);
platform::RecordRPCEvent record_event(method_name, nullptr);
platform::RecordRPCEvent record_event(method_name);
VarHandlePtr var_h(
new VarHandle(ep, method_name, req.varname(), nullptr, nullptr));

@ -89,7 +89,7 @@ VarHandlePtr GRPCClient::AsyncSendVar(const std::string& ep,
// stub context
s->response_call_back_ = nullptr;
platform::RecordRPCEvent record_event(method, p_ctx);
platform::RecordRPCEvent record_event(method);
auto call = s->stub_g_.PrepareUnaryCall(
s->context_.get(), "/sendrecv.SendRecvService/SendVariable", req, &cq_);
@ -184,7 +184,7 @@ VarHandlePtr GRPCClient::_AsyncGetVar(
// stub context
s->response_call_back_ = ProcGetResponse;
platform::RecordRPCEvent record_event(method, p_ctx);
platform::RecordRPCEvent record_event(method);
auto call =
s->stub_g_.PrepareUnaryCall(s->context_.get(), rpc_path, buf, &cq_);
@ -235,7 +235,7 @@ VarHandlePtr GRPCClient::AsyncPrefetchVar(const std::string& ep,
// stub context
s->response_call_back_ = ProcGetResponse;
platform::RecordRPCEvent record_event(method, p_ctx);
platform::RecordRPCEvent record_event(method);
auto call = s->stub_g_.PrepareUnaryCall(
s->context_.get(), "/sendrecv.SendRecvService/PrefetchVariable", req,
@ -265,7 +265,7 @@ VarHandlePtr GRPCClient::AsyncSendBatchBarrier(const std::string& ep,
sendrecv::VariableMessage req;
req.set_varname(BATCH_BARRIER_MESSAGE);
platform::RecordRPCEvent record_event(method, nullptr);
platform::RecordRPCEvent record_event(method);
auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, reinterpret_cast<void*>(s));
@ -290,7 +290,7 @@ VarHandlePtr GRPCClient::AsyncSendFetchBarrier(const std::string& ep,
sendrecv::VariableMessage req;
req.set_varname(FETCH_BARRIER_MESSAGE);
platform::RecordRPCEvent record_event(method, nullptr);
platform::RecordRPCEvent record_event(method);
auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, reinterpret_cast<void*>(s));
@ -317,7 +317,7 @@ VarHandlePtr GRPCClient::AsyncGetMonomerBarrier(const std::string& ep,
sendrecv::VariableMessage req;
req.set_varname(var_name);
platform::RecordRPCEvent record_event(method, nullptr);
platform::RecordRPCEvent record_event(method);
auto rpc = s->stub_->AsyncGetMonomerBarrier(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, reinterpret_cast<void*>(s));
@ -342,7 +342,7 @@ VarHandlePtr GRPCClient::AsyncSendComplete(const std::string& ep,
sendrecv::VariableMessage req;
req.set_varname(COMPLETE_MESSAGE);
platform::RecordRPCEvent record_event(method, nullptr);
platform::RecordRPCEvent record_event(method);
auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, reinterpret_cast<void*>(s));
@ -372,7 +372,7 @@ VarHandlePtr GRPCClient::AsyncCheckpointNotify(const std::string& ep,
req.set_varname(CHECKPOINT_SAVE_MESSAGE);
req.set_out_varname(dir);
platform::RecordRPCEvent record_event(method, nullptr);
platform::RecordRPCEvent record_event(method);
auto rpc = s->stub_->AsyncCheckpointNotify(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, reinterpret_cast<void*>(s));

@ -38,7 +38,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
::grpc::ByteBuffer* msg, const std::string& out_name,
const int trainer_id,
const std::string& table_name) {
platform::RecordRPCEvent record_event("serial", &ctx);
platform::RecordRPCEvent record_event("serial");
VarMsg request;
TensorPayload* payload = nullptr;
@ -147,7 +147,7 @@ void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
const platform::DeviceContext& ctx,
const framework::Scope* scope,
framework::Variable** var, int* trainer_id) {
platform::RecordRPCEvent record_event("deserial", &ctx);
platform::RecordRPCEvent record_event("deserial");
operators::distributed::GRPCVariableResponse resp(scope, &ctx);
PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
*var = resp.GetVar();

@ -85,9 +85,7 @@ class ReadOp : public framework::OperatorBase {
std::vector<framework::LoDTensor> ins;
// For profiling
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& ctx = *pool.Get(dev_place);
platform::RecordEvent record_event(Type(), &ctx);
platform::RecordEvent record_event(Type());
reader->ReadNext(&ins);
if (ins.empty()) {

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save