|
|
|
@ -28,7 +28,8 @@ using Variable = framework::Variable;
|
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
|
|
|
|
|
|
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
|
|
|
|
|
void RecurrentAlgorithm::Run(const Scope& scope,
|
|
|
|
|
const platform::DeviceContext& dev_ctx) const {
|
|
|
|
|
auto* input0 = scope.FindVar(arg_->inlinks[0]);
|
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(input0);
|
|
|
|
|
seq_len_ = input0->GetMutable<LoDTensor>()->dims()[0];
|
|
|
|
@ -36,38 +37,16 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const {
|
|
|
|
|
|
|
|
|
|
CreateScopes(scope);
|
|
|
|
|
auto& step_scopes = GetStepScopes(scope);
|
|
|
|
|
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
|
|
|
|
|
true /*infer_shape_mode*/);
|
|
|
|
|
InitMemories(step_scopes[0], true /*infer_shape_mode*/);
|
|
|
|
|
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_);
|
|
|
|
|
InitMemories(step_scopes[0]);
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < seq_len_; i++) {
|
|
|
|
|
if (i > 0) {
|
|
|
|
|
rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
|
|
|
|
|
true /*infer_shape_mode*/);
|
|
|
|
|
}
|
|
|
|
|
(*stepnet_)->InferShape(*step_scopes[i]);
|
|
|
|
|
}
|
|
|
|
|
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
|
|
|
|
|
true /*infer_shape_mode*/);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void RecurrentAlgorithm::Run(const Scope& scope,
|
|
|
|
|
const platform::DeviceContext& dev_ctx) const {
|
|
|
|
|
auto step_scopes = GetStepScopes(scope);
|
|
|
|
|
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
|
|
|
|
|
false /*infer_shape_mode*/);
|
|
|
|
|
InitMemories(step_scopes[0], false /*infer_shape_mode*/);
|
|
|
|
|
|
|
|
|
|
for (size_t step_id = 0; step_id < seq_len_; step_id++) {
|
|
|
|
|
// create output alias variables
|
|
|
|
|
if (step_id > 0) {
|
|
|
|
|
rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
|
|
|
|
|
false /*infer_shape_mode*/);
|
|
|
|
|
rnn::LinkMemories(step_scopes, arg_->memories, i, -1);
|
|
|
|
|
}
|
|
|
|
|
(*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
|
|
|
|
|
(*stepnet_)->Run(*step_scopes[i], dev_ctx);
|
|
|
|
|
}
|
|
|
|
|
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
|
|
|
|
|
false /*infer_shape_mode*/);
|
|
|
|
|
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
|
|
|
|
@ -105,8 +84,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
|
|
|
|
|
bool infer_shape_mode) const {
|
|
|
|
|
void RecurrentAlgorithm::InitMemories(Scope* step_scope) const {
|
|
|
|
|
for (auto& attr : arg_->memories) {
|
|
|
|
|
auto* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<LoDTensor>();
|
|
|
|
|
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
|
|
|
|
@ -114,12 +92,9 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope,
|
|
|
|
|
attr.boot_var);
|
|
|
|
|
auto* boot_mem =
|
|
|
|
|
step_scope->FindVar(attr.boot_var)->GetMutable<LoDTensor>();
|
|
|
|
|
if (infer_shape_mode) {
|
|
|
|
|
pre_mem->Resize(boot_mem->dims());
|
|
|
|
|
PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
|
|
|
|
|
} else {
|
|
|
|
|
pre_mem->ShareDataWith<float>(*boot_mem);
|
|
|
|
|
}
|
|
|
|
|
pre_mem->Resize(boot_mem->dims());
|
|
|
|
|
PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
|
|
|
|
|
pre_mem->ShareDataWith<float>(*boot_mem);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -169,23 +144,22 @@ class RecurrentAlgorithmProtoAndCheckerMaker
|
|
|
|
|
|
|
|
|
|
void RecurrentGradientAlgorithm::Run(
|
|
|
|
|
const Scope& scope, const platform::DeviceContext& dev_ctx) const {
|
|
|
|
|
seq_len_ =
|
|
|
|
|
scope.FindVar(arg_->inlinks[0])->GetMutable<LoDTensor>()->dims()[0];
|
|
|
|
|
auto step_scopes = GetStepScopes(scope);
|
|
|
|
|
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
|
|
|
|
|
false /*infer_shape_mode*/);
|
|
|
|
|
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_);
|
|
|
|
|
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
|
|
|
|
|
if (static_cast<size_t>(step_id) != seq_len_ - 1) {
|
|
|
|
|
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
|
|
|
|
|
false /*infer_shape_mode*/);
|
|
|
|
|
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1);
|
|
|
|
|
}
|
|
|
|
|
(*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
|
|
|
|
|
}
|
|
|
|
|
LinkBootMemoryGradients(step_scopes[0], false);
|
|
|
|
|
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
|
|
|
|
|
false /*infer_shape_mode*/);
|
|
|
|
|
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_);
|
|
|
|
|
LinkBootMemoryGradients(step_scopes[0]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
|
|
|
|
|
Scope* step_scope, bool infer_shape_mode) const {
|
|
|
|
|
Scope* step_scope) const {
|
|
|
|
|
for (auto& attr : arg_->memories) {
|
|
|
|
|
PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
|
|
|
|
|
"memory variable [%s] does not exists", attr.var);
|
|
|
|
@ -194,30 +168,9 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
|
|
|
|
|
auto* mem_grad = step_scope->NewVar(attr.var)->GetMutable<LoDTensor>();
|
|
|
|
|
auto* boot_mem_grad =
|
|
|
|
|
step_scope->NewVar(attr.boot_var)->GetMutable<LoDTensor>();
|
|
|
|
|
if (infer_shape_mode) {
|
|
|
|
|
boot_mem_grad->Resize(mem_grad->dims());
|
|
|
|
|
} else {
|
|
|
|
|
boot_mem_grad->ShareDataWith<float>(*mem_grad);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
|
|
|
|
|
seq_len_ =
|
|
|
|
|
scope.FindVar(arg_->inlinks[0])->GetMutable<LoDTensor>()->dims()[0];
|
|
|
|
|
auto step_scopes = GetStepScopes(scope);
|
|
|
|
|
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
|
|
|
|
|
true /*infer_shape_mode*/);
|
|
|
|
|
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
|
|
|
|
|
if (static_cast<size_t>(step_id) != seq_len_ - 1) {
|
|
|
|
|
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
|
|
|
|
|
true /*infer_shape_mode*/);
|
|
|
|
|
}
|
|
|
|
|
(*stepnet_)->InferShape(*step_scopes[step_id]);
|
|
|
|
|
boot_mem_grad->Resize(mem_grad->dims());
|
|
|
|
|
boot_mem_grad->ShareDataWith<float>(*mem_grad);
|
|
|
|
|
}
|
|
|
|
|
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
|
|
|
|
|
true /*infer_shape_mode*/);
|
|
|
|
|
LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
RecurrentGradientOp::RecurrentGradientOp(
|
|
|
|
|