|
|
|
@ -29,6 +29,10 @@ namespace paddle {
|
|
|
|
|
REGISTER_LAYER(exconv, ExpandConvLayer);
|
|
|
|
|
REGISTER_LAYER(exconvt, ExpandConvLayer);
|
|
|
|
|
|
|
|
|
|
inline bool isDepthwiseConv(int channels, int groups) {
|
|
|
|
|
return channels == groups;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ExpandConvLayer::init(const LayerMap &layerMap,
|
|
|
|
|
const ParameterMap ¶meterMap) {
|
|
|
|
|
/* Initialize the basic convolutional parent class */
|
|
|
|
@ -47,14 +51,23 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
|
|
|
|
|
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
|
|
|
|
|
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
|
|
|
|
|
|
|
|
|
|
if (useGpu_ && (size_t)groups_[i] == (size_t)channels_[i] && !isDeconv_) {
|
|
|
|
|
// Convolution Layer uses the GemmConv function by default.
|
|
|
|
|
convType = "GemmConv";
|
|
|
|
|
convGradInputType = "GemmConvGradInput";
|
|
|
|
|
convGradFilterType = "GemmConvGradFilter";
|
|
|
|
|
|
|
|
|
|
// If depth wise convolution and useGpu == true
|
|
|
|
|
if (useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
|
|
|
|
|
convType = "DepthwiseConv";
|
|
|
|
|
convGradInputType = "DepthwiseConvGradInput";
|
|
|
|
|
convGradFilterType = "DepthwiseConvGradFilter";
|
|
|
|
|
} else {
|
|
|
|
|
convType = "GemmConv";
|
|
|
|
|
convGradInputType = "GemmConvGradInput";
|
|
|
|
|
convGradFilterType = "GemmConvGradFilter";
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If depth wise convolution and useGpu == false and ARM-NEON
|
|
|
|
|
if (!useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
|
|
|
|
|
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
|
|
|
|
|
convType = "NeonDepthwiseConv";
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (FLAGS_use_nnpack && !isDeconv_) {
|
|
|
|
|