add pairewise distance for the paddlepaddle api 2.0revert-24895-update_cub
parent
1d870c442e
commit
361363c321
@ -0,0 +1,109 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
|
||||
def pairwise_distance(x, y, p=2.0, eps=1e-6, keepdim=False):
|
||||
return np.linalg.norm(x - y, ord=p, axis=1, keepdims=keepdim)
|
||||
|
||||
|
||||
def test_static(x_np, y_np, p=2.0, eps=1e-6, keepdim=False):
|
||||
prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
|
||||
place = fluid.CUDAPlace(0) if paddle.fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
|
||||
with paddle.static.program_guard(prog, startup_prog):
|
||||
x = paddle.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
|
||||
y = paddle.data(name='y', shape=y_np.shape, dtype=x_np.dtype)
|
||||
dist = paddle.nn.layer.distance.PairwiseDistance(
|
||||
p=p, eps=eps, keepdim=keepdim)
|
||||
distance = dist(x, y)
|
||||
exe = paddle.static.Executor(place)
|
||||
static_ret = exe.run(prog,
|
||||
feed={'x': x_np,
|
||||
'y': y_np},
|
||||
fetch_list=[distance])
|
||||
static_ret = static_ret[0]
|
||||
return static_ret
|
||||
|
||||
|
||||
def test_dygraph(x_np, y_np, p=2.0, eps=1e-6, keepdim=False):
|
||||
paddle.disable_static()
|
||||
x = paddle.to_variable(x_np)
|
||||
y = paddle.to_variable(y_np)
|
||||
dist = paddle.nn.layer.distance.PairwiseDistance(
|
||||
p=p, eps=eps, keepdim=keepdim)
|
||||
distance = dist(x, y)
|
||||
dygraph_ret = distance.numpy()
|
||||
paddle.enable_static()
|
||||
return dygraph_ret
|
||||
|
||||
|
||||
class TestPairwiseDistance(unittest.TestCase):
|
||||
def test_pairwise_distance(self):
|
||||
all_shape = [[100, 100], [4, 5, 6, 7]]
|
||||
dtypes = ['float32', 'float64']
|
||||
keeps = [False, True]
|
||||
for shape in all_shape:
|
||||
for dtype in dtypes:
|
||||
for keepdim in keeps:
|
||||
x_np = np.random.random(shape).astype(dtype)
|
||||
y_np = np.random.random(shape).astype(dtype)
|
||||
|
||||
static_ret = test_static(x_np, y_np, keepdim=keepdim)
|
||||
dygraph_ret = test_dygraph(x_np, y_np, keepdim=keepdim)
|
||||
excepted_value = pairwise_distance(
|
||||
x_np, y_np, keepdim=keepdim)
|
||||
|
||||
self.assertTrue(np.allclose(static_ret, dygraph_ret))
|
||||
self.assertTrue(np.allclose(static_ret, excepted_value))
|
||||
self.assertTrue(np.allclose(dygraph_ret, excepted_value))
|
||||
|
||||
def test_pairwise_distance_broadcast(self):
|
||||
shape_x = [100, 100]
|
||||
shape_y = [100, 1]
|
||||
keepdim = False
|
||||
x_np = np.random.random(shape_x).astype('float32')
|
||||
y_np = np.random.random(shape_y).astype('float32')
|
||||
static_ret = test_static(x_np, y_np, keepdim=keepdim)
|
||||
dygraph_ret = test_dygraph(x_np, y_np, keepdim=keepdim)
|
||||
excepted_value = pairwise_distance(x_np, y_np, keepdim=keepdim)
|
||||
self.assertTrue(np.allclose(static_ret, dygraph_ret))
|
||||
self.assertTrue(np.allclose(static_ret, excepted_value))
|
||||
self.assertTrue(np.allclose(dygraph_ret, excepted_value))
|
||||
|
||||
def test_pairwise_distance_different_p(self):
|
||||
shape = [100, 100]
|
||||
keepdim = False
|
||||
p = 3.0
|
||||
x_np = np.random.random(shape).astype('float32')
|
||||
y_np = np.random.random(shape).astype('float32')
|
||||
static_ret = test_static(x_np, y_np, p=p, keepdim=keepdim)
|
||||
dygraph_ret = test_dygraph(x_np, y_np, p=p, keepdim=keepdim)
|
||||
excepted_value = pairwise_distance(x_np, y_np, p=p, keepdim=keepdim)
|
||||
self.assertTrue(np.allclose(static_ret, dygraph_ret))
|
||||
self.assertTrue(np.allclose(static_ret, excepted_value))
|
||||
self.assertTrue(np.allclose(dygraph_ret, excepted_value))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,103 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
__all__ = ['PairwiseDistance']
|
||||
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
from ...fluid.dygraph import layers
|
||||
from ...fluid.framework import core, in_dygraph_mode
|
||||
from ...fluid.data_feeder import check_variable_and_dtype, check_type
|
||||
from ...fluid.layer_helper import LayerHelper
|
||||
|
||||
|
||||
class PairwiseDistance(layers.Layer):
|
||||
"""
|
||||
This operator computes the pairwise distance between two vectors. The
|
||||
distance is calculated by p-oreder norm:
|
||||
|
||||
.. math::
|
||||
|
||||
\Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}.
|
||||
|
||||
Parameters:
|
||||
p (float): The order of norm. The default value is 2.
|
||||
eps (float, optional): Add small value to avoid division by zero,
|
||||
default value is 1e-6.
|
||||
keepdim (bool, optional): Whether to reserve the reduced dimension
|
||||
in the output Tensor. The result tensor is one dimension less than
|
||||
the result of ``'x-y'`` unless :attr:`keepdim` is True, default
|
||||
value is False.
|
||||
name (str, optional): Name for the operation (optional, default is None).
|
||||
For more information, please refer to :ref:`api_guide_Name`.
|
||||
|
||||
Shape:
|
||||
x: :math:`(N, D)` where `D` is the dimension of vector, available dtype
|
||||
is float32, float64.
|
||||
y: :math:`(N, D)`, y have the same shape and dtype as x.
|
||||
out: :math:`(N)`. If :attr:`keepdim` is ``True``, the out shape is :math:`(N, 1)`.
|
||||
The same dtype as input tensor.
|
||||
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
|
||||
import paddle
|
||||
import numpy as np
|
||||
paddle.disable_static()
|
||||
x_np = np.array([[1., 3.], [3., 5.]]).astype(np.float64)
|
||||
y_np = np.array([[5., 6.], [7., 8.]]).astype(np.float64)
|
||||
x = paddle.to_variable(x_np)
|
||||
y = paddle.to_variable(y_np)
|
||||
dist = paddle.nn.PairwiseDistance()
|
||||
distance = dist(x, y)
|
||||
print(distance.numpy()) # [5. 5.]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, p=2., eps=1e-6, keepdim=False, name=None):
|
||||
super(PairwiseDistance, self).__init__()
|
||||
self.p = p
|
||||
self.eps = eps
|
||||
self.keepdim = keepdim
|
||||
self.name = name
|
||||
check_type(self.p, 'porder', (float, int), 'PairwiseDistance')
|
||||
check_type(self.eps, 'epsilon', (float), 'PairwiseDistance')
|
||||
check_type(self.keepdim, 'keepdim', (bool), 'PairwiseDistance')
|
||||
|
||||
def forward(self, x, y):
|
||||
if in_dygraph_mode():
|
||||
sub = core.ops.elementwise_sub(x, y)
|
||||
return core.ops.p_norm(sub, 'axis', 1, 'porder', self.p, 'keepdim',
|
||||
self.keepdim, 'epsilon', self.eps)
|
||||
|
||||
check_variable_and_dtype(x, 'x', ['float32', 'float64'],
|
||||
'PairwiseDistance')
|
||||
check_variable_and_dtype(y, 'y', ['float32', 'float64'],
|
||||
'PairwiseDistance')
|
||||
sub = paddle.elementwise_sub(x, y)
|
||||
|
||||
helper = LayerHelper("p_norm", name=self.name)
|
||||
attrs = {
|
||||
'axis': 1,
|
||||
'porder': self.p,
|
||||
'keepdim': self.keepdim,
|
||||
'epsilon': self.eps,
|
||||
}
|
||||
out = helper.create_variable_for_type_inference(
|
||||
dtype=self._helper.input_dtype(x))
|
||||
helper.append_op(
|
||||
type='p_norm', inputs={'X': sub}, outputs={'Out': out}, attrs=attrs)
|
||||
|
||||
return out
|
Loading…
Reference in new issue