parent
e657c127a8
commit
3641a78b01
@ -0,0 +1,14 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
__version__ = '0.1.0'
|
@ -0,0 +1,12 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
@ -0,0 +1,119 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .helper import MPIHelper
|
||||
|
||||
|
||||
class RoleMakerBase(object):
|
||||
def __init__(self):
|
||||
self.role_maker_name_ = ""
|
||||
self.trainer_endpoints_ = []
|
||||
self.pserver_endpoints_ = []
|
||||
|
||||
def is_worker(self):
|
||||
raise NotImplementedError("Please implement this method in child class")
|
||||
|
||||
def is_server(self):
|
||||
raise NotImplementedError("Please implement this method in child class")
|
||||
|
||||
def get_local_ip(self):
|
||||
import socket
|
||||
self.ip_ = socket.gethostbyname(socket.gethostname())
|
||||
return self.ip_
|
||||
|
||||
def get_trainer_endpoints(self):
|
||||
return self.trainer_endpoints_
|
||||
|
||||
def get_pserver_endpoints(self):
|
||||
return self.pserver_endpoints_
|
||||
|
||||
def generate_role(self):
|
||||
raise NotImplementedError("Please implement this method in child class")
|
||||
|
||||
|
||||
class MPIRoleMaker(RoleMakerBase):
|
||||
def __init__(self):
|
||||
from mpi4py import MPI
|
||||
self.comm_ = MPI.COMM_WORLD
|
||||
self.MPI = MPI
|
||||
|
||||
def get_rank(self):
|
||||
self.rank_ = self.comm_.Get_rank()
|
||||
return self.rank_
|
||||
|
||||
def get_size(self):
|
||||
self.size_ = self.comm_.Get_size()
|
||||
return self.size_
|
||||
|
||||
def all_gather(self, obj):
|
||||
self.barrier_all()
|
||||
return self.comm_.allgather(obj)
|
||||
|
||||
def barrier_all(self):
|
||||
self.comm_.barrier()
|
||||
|
||||
def get_ips(self):
|
||||
if self.ips_ == None:
|
||||
self.ips_ = self.comm_.allgather(self.get_local_ip())
|
||||
return self.ips_
|
||||
|
||||
def finalize(self):
|
||||
self.comm_.finalize()
|
||||
|
||||
|
||||
class MPISymetricRoleMaker(MPIRoleMaker):
|
||||
def __init__(self):
|
||||
super(MPISymetricRoleMaker, self).__init__()
|
||||
self.node_type_ = None
|
||||
self.proc_per_node_ = 2
|
||||
|
||||
def is_first_worker(self):
|
||||
return self.is_worker() and 0 == self.worker_index()
|
||||
|
||||
def is_worker(self):
|
||||
return self.node_type_ == 1
|
||||
|
||||
def is_server(self):
|
||||
return self.node_type_ == 0
|
||||
|
||||
def worker_num(self):
|
||||
if self.is_worker():
|
||||
return self.get_size()
|
||||
|
||||
def server_num(self):
|
||||
if self.is_server():
|
||||
return self.get_size()
|
||||
|
||||
def worker_index(self):
|
||||
return self.rank / self.proc_per_node_
|
||||
|
||||
def server_index(self):
|
||||
return self.rank / self.proc_per_node_
|
||||
|
||||
def barrier_worker(self):
|
||||
if self.is_worker():
|
||||
self.node_type_comm_.barrier()
|
||||
|
||||
def barrier_server(self):
|
||||
if self.is_server():
|
||||
self.node_type_comm_.barrier()
|
||||
|
||||
def generate_role(self):
|
||||
self.trainer_endpoints_ = self.get_ips()
|
||||
self.pserver_endpoints_ = self.get_ips()
|
||||
|
||||
if 0 == self.get_rank() % self.proc_per_node_ % 2:
|
||||
self.node_type_ = 0
|
||||
else:
|
||||
self.node_type_ = 1
|
||||
self.node_type_comm_ = self.comm_.Split(self.node_type_)
|
@ -0,0 +1,12 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
@ -0,0 +1,145 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
import sys
|
||||
import os
|
||||
from ..base.role_maker import MPISymetricRoleMaker
|
||||
from paddle.fluid.optimizer import Optimizer
|
||||
|
||||
# this is a temporary solution
|
||||
# TODO(guru4elephant)
|
||||
# will make this more flexible for more Parameter Server Archs
|
||||
fleet_instance = Fleet()
|
||||
|
||||
init = fleet_instance.init
|
||||
stop = fleet_instance.stop
|
||||
init_pserver = fleet_instance.init_pserver
|
||||
init_worker = fleet_instance.init_worker
|
||||
init_pserver_model = fleet_instance.init_pserver_model
|
||||
save_pserver_model = fleet_instance.save_pserver_model
|
||||
|
||||
|
||||
class Fleet(object):
|
||||
"""
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.opt_info = None # for fleet only
|
||||
self.role_maker_ = None
|
||||
|
||||
def init(self):
|
||||
# TODO(guru4elephant)
|
||||
# this is a temporary solution
|
||||
# we will support more configurable RoleMaker for users in the future
|
||||
self.role_maker_ = MPISymetricRoleMaker()
|
||||
self.role_maker_.generate_role()
|
||||
self._fleet_ptr = core.FleetWrapper()
|
||||
|
||||
def stop(self):
|
||||
self.role_maker_.barrier_worker()
|
||||
if self.role_maker_.is_first_worker():
|
||||
self._fleet_ptr.stop_server()
|
||||
self.role_maker_.barrier_worker()
|
||||
self.role_maker_.barrier_all()
|
||||
self.role_maker_.finalize()
|
||||
|
||||
def init_pserver(self):
|
||||
if self._opt_info:
|
||||
if "fleet_desc" in self._opt_info:
|
||||
self._dist_desc_str = text_format.MessageToString(
|
||||
self._opt_info["fleet_desc"])
|
||||
self._dist_desc = self._opt_info["fleet_desc"]
|
||||
else:
|
||||
print("You should run DistributedOptimizer.minimize() first")
|
||||
sys.exit(-1)
|
||||
self._fleet_ptr.init_server(self._dist_desc_str)
|
||||
ip = self._fleet_ptr.start_server()
|
||||
ips = self.role_maker_.all_gather(ip)
|
||||
self._fleet_ptr.gather_servers(ips, self.role_maker_.get_size())
|
||||
self.role_maker_.barrier_all()
|
||||
else:
|
||||
print("You should run DistributedOptimizer.minimize() first")
|
||||
sys.exit(-1)
|
||||
|
||||
def init_worker(self):
|
||||
if self._opt_info:
|
||||
if "fleet_desc" in self._opt_info:
|
||||
self._dist_desc_str = text_format.MessageToString(
|
||||
self._opt_info["fleet_desc"])
|
||||
self._dist_desc = self._opt_info["fleet_desc"]
|
||||
else:
|
||||
print("You should run DistributedOptimizer.minimize() first")
|
||||
sys.exit(-1)
|
||||
self.role_maker_.barrier_all()
|
||||
self._fleet_ptr.init_work(self.dist_desc_str_,
|
||||
self.role_maker.get_ips(),
|
||||
self.role_maker_.get_size(),
|
||||
self.role_maker_.get_rank())
|
||||
self.role_maker_.barrier_worker()
|
||||
else:
|
||||
print("You should run DistributedOptimizer.minimize() first")
|
||||
sys.exit(-1)
|
||||
|
||||
def init_pserver_model(self):
|
||||
if self.role_maker_.is_first_worker():
|
||||
self._fleet_ptr.init_model()
|
||||
self.role_maker_.barrier_worker()
|
||||
|
||||
def save_pserver_model(self, save_path):
|
||||
self._fleet_ptr.save_model(save_path)
|
||||
|
||||
def _set_opt_info(self, opt_info):
|
||||
self._opt_info = opt_info
|
||||
|
||||
|
||||
class DistributedOptimizer(paddle.fluid.Optimizer):
|
||||
def __init__(self, optimizer, dist_config={}):
|
||||
super(DistributedOptimizer, self).__init__()
|
||||
self._optimizer = optimizer
|
||||
self._optimizer_name = "Distributed%s" % optimizer.type.capitalize()
|
||||
if optimizer.type != "adam":
|
||||
print("Currently, distributed optimizer only supports Adam"
|
||||
"Will config built-in adam for you."
|
||||
"We will support more functions in DistributedOptimizer",
|
||||
sys.stderr)
|
||||
self._optimizer_name = "DistributedAdam"
|
||||
|
||||
self._distributed_optimizer = globals()[self._optimizer_name]()
|
||||
|
||||
def backward(self,
|
||||
loss,
|
||||
startup_program=None,
|
||||
parameter_list=None,
|
||||
no_grad_set=None,
|
||||
callbacks=None):
|
||||
pass
|
||||
|
||||
def apply_gradients(self, params_grads):
|
||||
pass
|
||||
|
||||
def minimize(self,
|
||||
loss,
|
||||
startup_program=None,
|
||||
parameter_list=None,
|
||||
no_grad_set=None):
|
||||
optimize_ops, param_grads, opt_info = \
|
||||
self._distributed_optimizer.minimize(
|
||||
self._optimizer,
|
||||
loss,
|
||||
startup_program,
|
||||
parameter_list,
|
||||
no_grad_set)
|
||||
|
||||
fleet_instance._set_opt_info(opt_info)
|
||||
return [a, b]
|
@ -0,0 +1,203 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
import ps_pb2 as pslib
|
||||
|
||||
|
||||
class Server(object):
|
||||
"""
|
||||
A Server basic class.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
class Worker(object):
|
||||
"""
|
||||
A Worker basic class.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
class DownpourServer(Server):
|
||||
"""
|
||||
DownpourServer class is used to generate server program_desc
|
||||
Args:
|
||||
server: it is pslib.ServerParameter()
|
||||
Examples:
|
||||
server = DownpourServer()
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.server_ = pslib.ServerParameter()
|
||||
self.server_.downpour_server_param.service_param.start_server_port = 0
|
||||
self.server_.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
|
||||
self.server_.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
|
||||
self.server_.downpour_server_param.service_param.service_class = "DownpourPsService"
|
||||
self.server_.downpour_server_param.service_param.start_server_port = 0
|
||||
self.server_.downpour_server_param.service_param.server_thread_num = 12
|
||||
|
||||
def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
|
||||
slot_value_var):
|
||||
"""
|
||||
Args:
|
||||
table_id(int): id of sparse params table
|
||||
learning_rate(float): the learning rate used to update parameters. \
|
||||
Can be a float value
|
||||
slot_key_vars(string): slot key id
|
||||
slot_value_var(string): slot key value after embedding
|
||||
Returns:
|
||||
return None
|
||||
"""
|
||||
table = self.server_.downpour_server_param.downpour_table_param.add()
|
||||
table.table_id = table_id
|
||||
table.table_class = "DownpourSparseTable"
|
||||
table.type = pslib.PS_SPARSE_TABLE
|
||||
table.accessor.accessor_class = "DownpourFeatureValueAccessor"
|
||||
table.accessor.sparse_sgd_param.learning_rate = learning_rate
|
||||
table.accessor.sparse_sgd_param.initial_g2sum = 3
|
||||
table.accessor.sparse_sgd_param.initial_range = 1e-4
|
||||
table.accessor.sparse_sgd_param.weight_bounds.extend([-10, 10])
|
||||
|
||||
table.accessor.embedx_dim = 8
|
||||
table.accessor.embedx_threshold = 5
|
||||
table.accessor.fea_dim = 11
|
||||
table.accessor.downpour_accessor_param.nonclk_coeff = 0.1
|
||||
table.accessor.downpour_accessor_param.click_coeff = 2
|
||||
table.accessor.downpour_accessor_param.base_threshold = 0.2
|
||||
table.accessor.downpour_accessor_param.delta_threshold = 0.15
|
||||
table.accessor.downpour_accessor_param.delta_keep_days = 31
|
||||
table.accessor.downpour_accessor_param.show_click_decay_rate = 0.999
|
||||
table.accessor.downpour_accessor_param.delete_threshold = 0.8
|
||||
|
||||
def add_dense_table(self, table_id, learning_rate, param_var, grad_var):
|
||||
"""
|
||||
Args:
|
||||
table_id(int): id of sparse params table
|
||||
learning_rate(float): the learning rate used to update parameters. \
|
||||
Can be a float value
|
||||
param_var(list): all dense param. it is a list.
|
||||
grad_var(list): all dense grad parm it is a list.
|
||||
Returns:
|
||||
return None
|
||||
"""
|
||||
table = self.server_.downpour_server_param.downpour_table_param.add()
|
||||
table.table_id = table_id
|
||||
table.table_class = "DownpourDenseTable"
|
||||
table.type = pslib.PS_DENSE_TABLE
|
||||
table.accessor.accessor_class = "DownpourDenseValueAccessor"
|
||||
table.accessor.dense_sgd_param.name = "adam"
|
||||
table.accessor.dense_sgd_param.adam.learning_rate = learning_rate
|
||||
table.accessor.dense_sgd_param.adam.avg_decay_rate = 0.999993
|
||||
table.accessor.dense_sgd_param.adam.ada_decay_rate = 0.9999
|
||||
table.accessor.dense_sgd_param.adam.ada_epsilon = 1e-8
|
||||
table.accessor.dense_sgd_param.adam.mom_decay_rate = 0.99
|
||||
table.accessor.dense_sgd_param.naive.learning_rate = 0.0002
|
||||
fea_dim = 0
|
||||
for param in filter(lambda x: x.name.find("embedding") == -1,
|
||||
param_var):
|
||||
fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
|
||||
table.accessor.fea_dim = fea_dim
|
||||
|
||||
def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var):
|
||||
"""
|
||||
Args:
|
||||
table_id(int): id of sparse params table
|
||||
learning_rate(float): the learning rate used to update parameters. \
|
||||
Can be a float value
|
||||
param_var(list): all dense param. it is a list.
|
||||
grad_var(list): all dense grad parm it is a list.
|
||||
Returns:
|
||||
return None
|
||||
"""
|
||||
table = self.server_.downpour_server_param.downpour_table_param.add()
|
||||
table.table_id = table_id
|
||||
table.table_class = "DownpourDenseTable"
|
||||
table.type = pslib.PS_DENSE_TABLE
|
||||
table.accessor.accessor_class = "DownpourDenseValueAccessor"
|
||||
table.accessor.dense_sgd_param.name = "summary"
|
||||
table.accessor.dense_sgd_param.summary.summary_decay_rate = 0.999999
|
||||
fea_dim = 0
|
||||
for param in filter(lambda x: x.name.find("embedding") == -1,
|
||||
param_var):
|
||||
fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
|
||||
table.accessor.fea_dim = fea_dim
|
||||
|
||||
def get_desc(self):
|
||||
"""
|
||||
Return downpour server program_desc
|
||||
"""
|
||||
return self.server_
|
||||
|
||||
|
||||
class DownpourWorker(Worker):
|
||||
"""
|
||||
DownpourWorker class is used to generate worker program_desc
|
||||
Args:
|
||||
window (int): push params frequency
|
||||
worker: it is pslib.DownpourTrainerParameter
|
||||
Examples:
|
||||
worker = DownpourWorker(1)
|
||||
"""
|
||||
|
||||
def __init__(self, window):
|
||||
self.window = window
|
||||
self.worker_ = pslib.DownpourTrainerParameter()
|
||||
|
||||
def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
|
||||
slot_value_vars):
|
||||
"""
|
||||
Args:
|
||||
table_id(int): id of sparse params table
|
||||
learning_rate(float): the learning rate used to update parameters. \
|
||||
Can be a float value
|
||||
slot_key_vars(string): slot key id
|
||||
slot_value_var(string): slot key value after embedding
|
||||
Returns:
|
||||
return None
|
||||
"""
|
||||
table = self.worker_.sparse_table.add()
|
||||
table.table_id = table_id
|
||||
table.slot_key.extend([var.name for var in slot_key_vars])
|
||||
table.slot_value.extend([var.name for var in slot_value_vars])
|
||||
table.slot_gradient.extend(
|
||||
[var.name + "@GRAD" for var in slot_value_vars])
|
||||
|
||||
def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars):
|
||||
"""
|
||||
Args:
|
||||
table_id(int): id of sparse params table
|
||||
learning_rate(float): the learning rate used to update parameters. \
|
||||
Can be a float value
|
||||
param_var(list): all dense param. it is a list.
|
||||
grad_var(list): all dense grad parm it is a list.
|
||||
Returns:
|
||||
return None
|
||||
"""
|
||||
table = self.worker_.dense_table.add()
|
||||
table.table_id = table_id
|
||||
table.dense_variable_name.extend(
|
||||
filter(lambda x: x.find("embedding") == -1,
|
||||
[p.name for p in param_vars]))
|
||||
table.dense_gradient_variable_name.extend(
|
||||
filter(lambda x: x.find("embedding") == -1,
|
||||
[g.name for g in grad_vars]))
|
||||
|
||||
def get_desc(self):
|
||||
"""
|
||||
Return downpour worker program_desc
|
||||
"""
|
||||
return self.worker_
|
@ -0,0 +1,155 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
__all__ = ["DistributedAdam"]
|
||||
import ps_pb2 as pslib
|
||||
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
|
||||
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table_inputs
|
||||
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table_outputs
|
||||
from google.protobuf import text_format
|
||||
|
||||
|
||||
class DistributedOptimizerImplBase(object):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def minimize(self,
|
||||
optimizer,
|
||||
losses,
|
||||
startup_program=None,
|
||||
parameter_list=None,
|
||||
no_grad_set=None):
|
||||
pass
|
||||
|
||||
|
||||
class DistributedAdam(DistributedOptimizerImplBase):
|
||||
def __init__(self):
|
||||
# todo(guru4elephant): add more optimizers here as argument
|
||||
# todo(guru4elephant): make learning_rate as a variable
|
||||
self.learning_rate_ = learning_rate
|
||||
self.window_ = window
|
||||
self.type = "downpour"
|
||||
self.data_norm_name = [
|
||||
".batch_size", ".batch_square_sum", ".batch_sum",
|
||||
".batch_size@GRAD", ".batch_square_sum@GRAD", ".batch_sum@GRAD"
|
||||
]
|
||||
|
||||
def minimize(self,
|
||||
optimizer,
|
||||
loss,
|
||||
startup_program=None,
|
||||
parameter_list=None,
|
||||
no_grad_set=None):
|
||||
"""
|
||||
DownpounSGD is a distributed optimizer so
|
||||
that user can call minimize to generate backward
|
||||
operators and optimization operators within minmize function
|
||||
Args:
|
||||
loss(Variable): loss variable defined by user
|
||||
startup_program(Program): startup program that defined by user
|
||||
parameter_list(str list): parameter names defined by users
|
||||
no_grad_set(set): a set of variables that is defined by users
|
||||
so that these variables do not need gradient computation
|
||||
Returns:
|
||||
[optimize_ops, grads_and_weights]
|
||||
"""
|
||||
if not isinstance(loss, list):
|
||||
loss = [loss]
|
||||
|
||||
table_name = find_distributed_lookup_table(losses[0].block.program)
|
||||
prefetch_slots = find_distributed_lookup_table_inputs(
|
||||
losses[0].block.program, table_name)
|
||||
prefetch_slots_emb = find_distributed_lookup_table_outputs(
|
||||
losses[0].block.program, table_name)
|
||||
|
||||
ps_param = pslib.PSParameter()
|
||||
server = DownpourServer()
|
||||
worker = DownpourWorker(self.window_)
|
||||
sparse_table_index = 0
|
||||
server.add_sparse_table(sparse_table_index, self.learning_rate_,
|
||||
prefetch_slots, prefetch_slots_emb)
|
||||
worker.add_sparse_table(sparse_table_index, self.learning_rate_,
|
||||
prefetch_slots, prefetch_slots_emb)
|
||||
dense_table_index = 1
|
||||
program_configs = []
|
||||
param_grads_list = []
|
||||
|
||||
for loss_index in range(len(losses)):
|
||||
program_config = ps_param.trainer_param.program_config.add()
|
||||
program_config.program_id = str(
|
||||
id(losses[loss_index].block.program))
|
||||
program_config.pull_sparse_table_id.extend([sparse_table_index])
|
||||
program_config.push_sparse_table_id.extend([sparse_table_index])
|
||||
params_grads = sorted(
|
||||
append_backward(losses[loss_index], parameter_list,
|
||||
no_grad_set),
|
||||
key=lambda x: x[0].name)
|
||||
param_grads_list.append(params_grads)
|
||||
params = []
|
||||
grads = []
|
||||
data_norm_params = []
|
||||
data_norm_grads = []
|
||||
for i in params_grads:
|
||||
is_data_norm_data = False
|
||||
for data_norm_name in self.data_norm_name:
|
||||
if i[0].name.endswith(data_norm_name):
|
||||
is_data_norm_data = True
|
||||
data_norm_params.append(i[0])
|
||||
if not is_data_norm_data:
|
||||
params.append(i[0])
|
||||
for i in params_grads:
|
||||
is_data_norm_data = False
|
||||
for data_norm_grad in self.data_norm_name:
|
||||
if i[0].name.endswith(data_norm_grad):
|
||||
is_data_norm_data = True
|
||||
data_norm_grads.append(i[1])
|
||||
if not is_data_norm_data:
|
||||
grads.append(i[1])
|
||||
server.add_dense_table(dense_table_index, self.learning_rate_,
|
||||
params, grads)
|
||||
worker.add_dense_table(dense_table_index, self.learning_rate_,
|
||||
params, grads)
|
||||
program_config.pull_dense_table_id.extend([dense_table_index])
|
||||
program_config.push_dense_table_id.extend([dense_table_index])
|
||||
if len(data_norm_params) != 0 and len(data_norm_grads) != 0:
|
||||
dense_table_index += 1
|
||||
server.add_data_norm_table(dense_table_index,
|
||||
self.learning_rate_,
|
||||
data_norm_params, data_norm_grads)
|
||||
worker.add_dense_table(dense_table_index, self.learning_rate_,
|
||||
data_norm_params, data_norm_grads)
|
||||
program_config.pull_dense_table_id.extend([dense_table_index])
|
||||
program_config.push_dense_table_id.extend([dense_table_index])
|
||||
dense_table_index += 1
|
||||
program_configs.append(program_config)
|
||||
ps_param.server_param.CopyFrom(server.get_desc())
|
||||
ps_param.trainer_param.CopyFrom(worker.get_desc())
|
||||
for program_config in program_configs:
|
||||
ps_param.trainer_param.program_config.extend([program_config])
|
||||
# Todo(guru4elephant): figure out how to support more sparse parameters
|
||||
# currently only support lookup_table
|
||||
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
|
||||
ps_param.trainer_param.skip_op.extend(worker_skipped_ops)
|
||||
|
||||
opt_info = {}
|
||||
opt_info["trainer"] = "DistMultiTrainer"
|
||||
opt_info["device_worker"] = "DownpourSGD"
|
||||
opt_info["optimizer"] = "DownpourSGD"
|
||||
opt_info["fleet_desc"] = ps_param
|
||||
opt_info["worker_skipped_ops"] = worker_skipped_ops
|
||||
|
||||
for loss in losses:
|
||||
loss.block.program._fleet_opt = opt_info
|
||||
|
||||
return None, param_grads_list[0], opt_info
|
File diff suppressed because one or more lines are too long
Loading…
Reference in new issue