Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into feature/process_lod_grad

revert-12864-feature/process_lod_grad
Yu Yang 7 years ago
commit 3768677980

2
.gitignore vendored

@ -5,6 +5,7 @@ python/paddle/v2/fluid/tests/book/image_classification_resnet.inference.model/
python/paddle/v2/fluid/tests/book/image_classification_vgg.inference.model/
python/paddle/v2/fluid/tests/book/label_semantic_roles.inference.model/
*.DS_Store
*.vs
build/
build_doc/
*.user
@ -15,6 +16,7 @@ build_doc/
.cproject
.pydevproject
.settings/
CMakeSettings.json
Makefile
.test_env/
third_party/

@ -204,22 +204,24 @@ include(external/snappy) # download snappy
include(external/snappystream)
include(external/threadpool)
set(WITH_ANAKIN OFF CACHE STRING "Disable Anakin first, will add it later." FORCE)
include(flags) # set paddle compile flags
include(cudnn) # set cudnn libraries, must before configure
include(cupti)
include(configure) # add paddle env configuration
if(WITH_GPU)
include(cuda)
include(tensorrt)
include(external/anakin)
elseif()
set(WITH_ANAKIN OFF CACHE STRING "Anakin is used in GPU only now." FORCE)
endif()
include(cudnn) # set cudnn libraries, must before configure
include(cupti)
include(configure) # add paddle env configuration
include(generic) # simplify cmake module
include(package) # set paddle packages
include(ccache) # set ccache for compilation
include(util) # set unittest and link libs
include(rdma) # set rdma libraries
include(flags) # set paddle compile flags
include(version) # set PADDLE_VERSION
include(coveralls) # set code coverage
include(inference_lib) # add paddle fluid inference libraries

@ -50,7 +50,11 @@ if(NOT WITH_PROFILER)
endif(NOT WITH_PROFILER)
if(NOT CMAKE_CROSSCOMPILING)
if(WITH_AVX AND AVX_FOUND)
if(WITH_AVX AND AVX512F_FOUND)
set(SIMD_FLAG ${AVX512F_FLAG})
elseif(WITH_AVX AND AVX2_FOUND)
set(SIMD_FLAG ${AVX2_FLAG})
elseif(WITH_AVX AND AVX_FOUND)
set(SIMD_FLAG ${AVX_FLAG})
elseif(SSE3_FOUND)
set(SIMD_FLAG ${SSE3_FLAG})
@ -99,12 +103,21 @@ if(WITH_GPU)
endif()
if(WITH_ANAKIN)
if(${CUDA_VERSION_MAJOR} VERSION_LESS 8)
message(FATAL_ERROR "Anakin needs CUDA >= 8.0 to compile")
message(WARNING "Anakin needs CUDA >= 8.0 to compile. Force WITH_ANAKIN=OFF")
set(WITH_ANAKIN OFF CACHE STRING "Anakin is valid only when CUDA >= 8.0." FORCE)
endif()
if(${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
message(FATAL_ERROR "Anakin needs CUDNN >= 7.0 to compile")
message(WARNING "Anakin needs CUDNN >= 7.0 to compile. Force WITH_ANAKIN=OFF")
set(WITH_ANAKIN OFF CACHE STRING "Anakin is valid only when CUDNN >= 7.0." FORCE)
endif()
endif()
if(WITH_ANAKIN)
# NOTICE(minqiyang): the end slash is important because $CUDNN_INCLUDE_DIR
# is a softlink to real cudnn.h directory
set(ENV{CUDNN_INCLUDE_DIR} "${CUDNN_INCLUDE_DIR}/")
get_filename_component(CUDNN_LIBRARY_DIR ${CUDNN_LIBRARY} DIRECTORY)
set(ENV{CUDNN_LIBRARY} ${CUDNN_LIBRARY_DIR})
endif()
elseif(WITH_AMD_GPU)
add_definitions(-DPADDLE_WITH_HIP)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -D__HIP_PLATFORM_HCC__")

@ -25,8 +25,25 @@ list(APPEND CUDNN_CHECK_LIBRARY_DIRS
$ENV{CUDNN_ROOT}
$ENV{CUDNN_ROOT}/lib64
$ENV{CUDNN_ROOT}/lib
/usr/lib)
find_library(CUDNN_LIBRARY NAMES libcudnn.so libcudnn.dylib # libcudnn_static.a
/usr/lib
${CUDA_TOOLKIT_ROOT_DIR}
${CUDA_TOOLKIT_ROOT_DIR}/lib/x64
)
set(CUDNN_LIB_NAME "")
if (LINUX)
set(CUDNN_LIB_NAME "libcudnn.so")
endif(LINUX)
if(WIN32)
# only support cudnn7
set(CUDNN_LIB_NAME "cudnn.lib" "cudnn64_7.dll")
endif(WIN32)
if(Apple)
set(CUDNN_LIB_NAME "libcudnn.dylib" "libcudnn.so")
endif(Apple)
find_library(CUDNN_LIBRARY NAMES ${CUDNN_LIB_NAME} # libcudnn_static.a
PATHS ${CUDNN_CHECK_LIBRARY_DIRS} ${CUDNN_INCLUDE_DIR} ${__libpath_hist}
NO_DEFAULT_PATH
DOC "Path to cuDNN library.")

@ -2,6 +2,11 @@ if (NOT WITH_ANAKIN)
return()
endif()
option(ANAKIN_ENABLE_OP_TIMER "Get more detailed information with Anakin op time" OFF)
if(ANAKIN_ENABLE_OP_TIMER)
add_definitions(-DPADDLE_ANAKIN_ENABLE_OP_TIMER)
endif()
INCLUDE(ExternalProject)
set(ANAKIN_SOURCE_DIR ${THIRD_PARTY_PATH}/anakin)
# the anakin install dir is only default one now
@ -11,33 +16,45 @@ set(ANAKIN_LIBRARY ${ANAKIN_INSTALL_DIR})
set(ANAKIN_SHARED_LIB ${ANAKIN_LIBRARY}/libanakin.so)
set(ANAKIN_SABER_LIB ${ANAKIN_LIBRARY}/libanakin_saber_common.so)
# TODO(luotao): ANAKIN_MODLE_URL will move to demo ci later.
set(ANAKIN_MODLE_URL "http://paddle-inference-dist.bj.bcebos.com/mobilenet_v2.anakin.bin")
# TODO(luotao): ANAKIN_MODLE_URL etc will move to demo ci later.
set(INFERENCE_URL "http://paddle-inference-dist.bj.bcebos.com")
set(ANAKIN_MODLE_URL "${INFERENCE_URL}/mobilenet_v2.anakin.bin")
set(ANAKIN_RNN_MODLE_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn.anakin2.model.bin")
set(ANAKIN_RNN_DATA_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn_data.txt")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_SOURCE_DIR}")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_MODLE_URL}")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_MODLE_URL} -N")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_MODLE_URL} -N")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_DATA_URL} -N")
include_directories(${ANAKIN_INCLUDE})
include_directories(${ANAKIN_INCLUDE}/saber/)
include_directories(${ANAKIN_INCLUDE}/saber/core/)
include_directories(${ANAKIN_INCLUDE}/saber/funcs/impl/x86/)
include_directories(${ANAKIN_INCLUDE}/saber/funcs/impl/cuda/base/cuda_c/)
set(ANAKIN_COMPILE_EXTRA_FLAGS
set(ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-error=unused-but-set-variable -Wno-unused-but-set-variable
-Wno-error=unused-variable -Wno-unused-variable
-Wno-error=unused-variable -Wno-unused-variable
-Wno-error=format-extra-args -Wno-format-extra-args
-Wno-error=comment -Wno-comment
-Wno-error=format -Wno-format
-Wno-error=maybe-uninitialized -Wno-maybe-uninitialized
-Wno-error=switch -Wno-switch
-Wno-error=return-type -Wno-return-type
-Wno-error=return-type -Wno-return-type
-Wno-error=non-virtual-dtor -Wno-non-virtual-dtor
-Wno-error=ignored-qualifiers
-Wno-ignored-qualifiers
-Wno-sign-compare
-Wno-reorder
-Wno-reorder
-Wno-error=cpp)
ExternalProject_Add(
extern_anakin
${EXTERNAL_PROJECT_LOG_ARGS}
# TODO(luotao): use PaddlePaddle/Anakin later
DEPENDS ${MKLML_PROJECT}
# Anakin codes error on Intel(R) Xeon(R) Gold 5117 CPU, temporary do not compile avx512 related code.
GIT_REPOSITORY "https://github.com/luotao1/Anakin"
GIT_TAG "3957ae9263eaa0b1986758dac60a88852afb09be"
GIT_TAG "211d1fc5d813d70c0c14072f9083cf25f40940ea"
PREFIX ${ANAKIN_SOURCE_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DUSE_GPU_PLACE=YES
@ -46,6 +63,8 @@ ExternalProject_Add(
-DPROTOBUF_ROOT=${THIRD_PARTY_PATH}/install/protobuf
-DMKLML_ROOT=${THIRD_PARTY_PATH}/install/mklml
-DCUDNN_ROOT=${CUDNN_ROOT}
-DCUDNN_INCLUDE_DIR=${CUDNN_INCLUDE_DIR}
-DENABLE_OP_TIMER=${ANAKIN_ENABLE_OP_TIMER}
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ANAKIN_INSTALL_DIR}
)

@ -102,7 +102,6 @@ set(COMMON_FLAGS
-fno-omit-frame-pointer
-Wall
-Wextra
-Werror
-Wnon-virtual-dtor
-Wdelete-non-virtual-dtor
-Wno-unused-parameter
@ -115,6 +114,11 @@ set(COMMON_FLAGS
-Wno-error=terminate # Warning in PADDLE_ENFORCE
)
# https://github.com/PaddlePaddle/Paddle/issues/12773
if (NOT WIN32)
list(APPEND COMMON_FLAGS -Werror)
endif()
set(GPU_COMMON_FLAGS
-fPIC
-fno-omit-frame-pointer
@ -142,6 +146,11 @@ else()
${GPU_COMMON_FLAGS})
endif()
if(UNIX AND NOT APPLE)
# except apple from nix*Os family
set(LINUX TRUE)
endif(UNIX AND NOT APPLE)
foreach(flag ${COMMON_FLAGS})
safe_set_cflag(CMAKE_C_FLAGS ${flag})

@ -10,6 +10,7 @@ if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID
set(SSE3_FLAG "-msse3")
set(AVX_FLAG "-mavx")
set(AVX2_FLAG "-mavx2")
set(AVX512F_FLAG "-mavx512f")
elseif(MSVC)
set(MMX_FLAG "/arch:MMX")
set(SSE2_FLAG "/arch:SSE2")
@ -81,5 +82,16 @@ int main()
return 0;
}" AVX2_FOUND)
# Check AVX512F
set(CMAKE_REQUIRED_FLAGS ${AVX512F_FLAG})
set(AVX512F_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
{
__m512i a = _mm512_undefined_epi32();
return 0;
}" AVX512F_FOUND)
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_RETAINED})
mark_as_advanced(MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND)
mark_as_advanced(MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND AVX512F_FOUND)

@ -28,7 +28,7 @@ def get_symbol(num_classes=10, **kwargs):
Varible here is actually a Symbol. Every basic Symbol will correspond to one Node, and every Node has its own NodeAttr. There is a op field in NodeAttr class, when a Symbol represents Variable(often input data), the op field is null.
Varible here is actually a Symbol. Every basic Symbol will correspond to one Node, and every Node has its own AnyAttr. There is a op field in AnyAttr class, when a Symbol represents Variable(often input data), the op field is null.
Symbol contains a data member, std::vector<NodeEntry> outputs, and NodeEntry cantains a poniter to Node. We can follow the Node pointer to get all the Graph.

@ -119,10 +119,29 @@ $$Out = scale*X$$
这个例子有`AddAttr<AttrType>("scale", "...").SetDefault(1.0);` : 增加`scale`系数作为参数属性并且设置默认值为1.0。
### 定义GradProtoMaker类
每个Op的必须有一个对应的GraProtoMaker若未定制对应前向Op的GradProtoMakerfluid提供了DefaultGradProtoMaker默认注册会使用全部输入输出包括Input, Output, Output@Grad等使用不需要的变量的会造成显存浪费。
下面示例定义了ScaleOp的GradProtoMaker。
```cpp
class ScaleGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
std::unique_ptr<framework::OpDesc> Apply() const override {
auto *grad_op = new framework::OpDesc();
grad_op->SetType("scale");
grad_op->SetInput("X", OutputGrad("Out"));
grad_op->SetOutput("Out", InputGrad("X"));
grad_op->SetAttr("scale", GetAttr("scale"));
return std::unique_ptr<framework::OpDesc>(grad_op);
}
};
```
### 定义Operator类
下面的点实现了MulOp的定义
下面实现了MulOp的定义
```cpp
class MulOp : public framework::OperatorWithKernel {
@ -334,3 +353,83 @@ ctest -R test_mul_op
- 注册Op时的类型名需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OPERATOR(B, ...)`等,这将会导致单元测试出错。
- 如果Op没有实现CUDA Kernel请不要创建空的`*_op.cu`,这将会导致单元测试出错。
- 如果多个Op依赖一些共用的函数可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。
### PADDLE_ENFORCE使用注意
实现Op时检查数据的合法性需要使用PADDLE_ENFORCE以及PADDLE_ENFORCE_EQ等宏定义基本格式如下
```
PADDLE_ENFORCE(表达式, 错误提示信息)
PADDLE_ENFORCE_EQ(比较对象A, 比较对象B, 错误提示信息)
```
如果表达式为真或者比较对象A=B则检查通过否则会终止程序运行向用户反馈相应的错误提示信息。
为了确保提示友好易懂,开发者需要注意其使用方法。
#### 总体原则
任何使用了PADDLE_ENFORCE与PADDLE_ENFORCE_**检查的地方,必须有详略得当的备注解释!**错误提示信息**不能为空!
#### 提示信息书写标准
1. [required] 哪里错了?为什么错了?
- 例如:`ValueError: Mismatched label shape`
2. [optional] 期望的输入是什么样的?实际的输入是怎样的?
- 例如:`Expected labels dimension=1. Received 4.`
3. [optional] 能否给出修改意见?
- 例如:`Suggested Fix:If your classifier expects one-hot encoding label,check your n_classes argument to the estimatorand/or the shape of your label.Otherwise, check the shape of your label.`
如果并非必要或者简洁的描述即可表达清楚以上要点,根据情况书写亦可。
##### FAQ 典型问题
1. 无报错信息或报错信息过于简单,不能给用户提供有效的提示!
问题示例1 :未写提示信息
```
PADDLE_ENFORCE(ctx->HasInput("X"), "");
```
问题示例2 :提示信息过于简单
```
PADDLE_ENFORCE(i != nullptr, "I must be set"); // I是什么
```
2. 在报错信息中使用开发人员定义的变量缩写,不易理解!
问题示例:
```
PADDLE_ENFORCE(forward_pd != nullptr,
"Fail to find eltwise_fwd_pd in device context"); //eltwise_fwd_pd用户可能看不懂
```
3. OP内部调用非法接口Op内部如果出现Output = ShareDataWith(Input)
问题示例:
```cpp
auto *out = ctx.Output<framework::LoDTensor>("Out");
auto *in = ctx.Input<framework::LoDTensor>("X");
out->ShareDataWith(*in);
```
Op内部如果出现Output = ShareDataWith(Input)相当于operator图的中有一条隐藏边连接了Input和Output这条边无法在图分析中表达引发基于图优化的错误。
4. OP实现的性能实践
调用了eigen的broadcast, chop等操作性能会比手写cuda kernel差几倍以上。此时cpu的实现可以复用eigengpu实现可以实现cuda kernel.
#### OP InferShape检查提示信息特别说明
- 检查输入输出变量,请统一遵循以下格式
`Input(变量名) of OP名 operator should not be null.`
正确示例:
```
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of LSTMP operator should not be null.");
```
- 反向Op的输入输出检查要写明反向Op的名字
正确示例:
```
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of LoDResetGrad opreator should not be null.");
```

@ -7,7 +7,7 @@
Eigen Tensor模块对element-wise计算提供了强大的支持并且书写一份代码可以同时在CPU、GPU执行。但Eigen Tensor是一个正在开发中的模块因此可能测试不够完备文档较少。
关于Eigen Tensor模块的详细介绍请参考[文档1](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md) 和[文档2](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md)
关于Eigen Tensor模块的详细介绍请参考[Eigen文档](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md)
## paddle::framework::Tensor

@ -78,7 +78,7 @@ paddle.fluid.io.load_vars ArgSpec(args=['executor', 'dirname', 'main_program', '
paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, True))
paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename', 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False))
paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0))
@ -153,6 +153,7 @@ paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'n
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.random_crop ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean_iou ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
@ -250,7 +251,6 @@ paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwarg
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)

@ -99,8 +99,13 @@ else()
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method)
endif()
cc_library(parallel_executor SRCS parallel_executor.cc DEPS threaded_ssa_graph_executor scope_buffered_ssa_graph_executor graph graph_viz_pass multi_devices_graph_pass multi_devices_graph_print_pass multi_devices_graph_check_pass)
if (NOT WIN32)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fast_threaded_ssa_graph_executor)
endif() # NOT WIN32
cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)
@ -115,6 +120,8 @@ cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc)
# cc_test(channel_test SRCS channel_test.cc)
cc_test(tuple_test SRCS tuple_test.cc )
cc_test(rw_lock_test SRCS rw_lock_test.cc)
# disable test temporarily.
# TODO https://github.com/PaddlePaddle/Paddle/issues/11971
# cc_test(concurrency_test SRCS concurrency_test.cc DEPS go_op channel_close_op channel_create_op

@ -128,7 +128,8 @@ struct ExtractAttribute {
attr_value = &boost::get<T>(attr);
} catch (boost::bad_get& bad_get) {
PADDLE_THROW("Cannot get attribute %s by type %s, its type is %s",
attr_name_, typeid(T).name(), attr.type().name());
attr_name_, paddle::platform::demangle(typeid(T).name()),
paddle::platform::demangle(attr.type().name()));
}
return attr_value;
}
@ -160,7 +161,7 @@ struct ExtractAttribute<bool> {
attr_value = &boost::get<bool>(attr);
} catch (boost::bad_get& bad_get) {
PADDLE_THROW("Cannot get attribute %s by type bool, its type is %s",
attr_name_, attr.type().name());
attr_name_, paddle::platform::demangle(attr.type().name()));
}
return attr_value;
}
@ -186,7 +187,7 @@ struct ExtractAttribute<int64_t> {
attr_value = &boost::get<int64_t>(attr);
} catch (boost::bad_get& bad_get) {
PADDLE_THROW("Cannot get attribute %s by type int64_t, its type is %s",
attr_name_, attr.type().name());
attr_name_, paddle::platform::demangle(attr.type().name()));
}
return attr_value;
}

@ -42,3 +42,5 @@ cc_test(gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_b
cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_executor.cc DEPS ssa_graph_executor)
#cc_test(reduce_op_handle_test SRCS reduce_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
# device_context reduce_op_handle )
cc_library(fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc
DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context)

@ -19,10 +19,13 @@ namespace framework {
namespace details {
struct ExecutionStrategy {
enum ExecutorType { kDefault = 0, kExperimental = 1 };
size_t num_threads_{0};
bool use_cuda_{true};
bool allow_op_delay_{false};
size_t num_iteration_per_drop_scope_{100};
ExecutorType type_{kDefault};
};
} // namespace details

@ -0,0 +1,175 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
namespace paddle {
namespace framework {
namespace details {
FastThreadedSSAGraphExecutor::FastThreadedSSAGraphExecutor(
const ExecutionStrategy &strategy, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
std::unique_ptr<ir::Graph> &&graph)
: strategy_(strategy),
local_scopes_(local_scopes),
places_(places),
graph_(std::move(graph)),
pool_(strategy.num_threads_ +
1), // add one more thread for generate op_deps
fetch_ctxs_(places) {
auto &ops = graph_->Get<details::GraphOps>("ops");
for (auto &op : ops) {
int dep = static_cast<int>(op->NotReadyInputSize());
op_deps_.emplace(op.get(), dep);
if (dep == 0) {
bootstrap_ops_.emplace_back(op.get());
}
}
PrepareAtomicOpDeps();
}
FeedFetchList FastThreadedSSAGraphExecutor::Run(
const std::vector<std::string> &fetch_tensors) {
std::unique_ptr<std::unordered_map<OpHandleBase *, std::atomic<int>>>
op_deps = atomic_op_deps_.get();
PrepareAtomicOpDeps();
paddle::framework::FeedFetchList fetches;
fetches.resize(fetch_tensors.size());
std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars;
std::vector<std::unique_ptr<ir::Node>> fetch_nodes;
std::vector<std::unique_ptr<FetchOpHandle>> fetch_ops;
for (auto &fetch_var_name : fetch_tensors) {
for (auto &var_map : graph_->Get<details::GraphVars>("vars")) {
auto it = var_map.find(fetch_var_name);
if (it != var_map.end()) {
fetched_vars[fetch_var_name].push_back(it->second.rbegin()->get());
}
}
}
for (size_t i = 0; i < fetch_tensors.size(); ++i) {
auto &var_name = fetch_tensors[i];
auto fetched_var_it = fetched_vars.find(var_name);
PADDLE_ENFORCE(fetched_var_it != fetched_vars.end(),
"Cannot find fetched variable.(Perhaps the main_program "
"is not set to ParallelExecutor)");
auto &vars = fetched_var_it->second;
fetch_nodes.emplace_back(new ir::Node("fetch", ir::Node::Type::kOperation));
auto *op = new FetchOpHandle(fetch_nodes.back().get(), &fetches, i,
&local_scopes_);
fetch_ops.emplace_back(op);
for (auto &p : places_) {
op->SetDeviceContext(p, fetch_ctxs_.Get(p));
}
for (auto *var : vars) {
op->AddInput(var);
}
(*op_deps)[op] = static_cast<int>(op->NotReadyInputSize());
}
size_t num_complete = 0;
remaining_ = 0;
BlockingQueue<size_t> complete_q;
for (auto op : bootstrap_ops_) {
RunOpAsync(op_deps.get(), op, &complete_q);
}
while (num_complete != op_deps->size()) {
size_t num_comp = complete_q.Pop();
if (num_comp == -1UL) {
int remaining = 0;
while (true) {
remaining = remaining_;
if (remaining == 0) {
break;
}
for (int i = 0; i < remaining; ++i) {
complete_q.Pop();
}
}
exception_.ReThrow();
}
num_complete += num_comp;
}
// Wait FetchOps.
if (!fetch_ops.empty()) {
fetch_ops.clear();
}
return fetches;
}
void FastThreadedSSAGraphExecutor::RunOpAsync(
std::unordered_map<OpHandleBase *, std::atomic<int>> *op_deps,
OpHandleBase *op, BlockingQueue<size_t> *complete_q) {
++remaining_;
this->pool_.enqueue([=] {
OpHandleBase *op_to_run = op;
size_t complete = 0;
while (op_to_run != nullptr) {
try {
op_to_run->Run(strategy_.use_cuda_);
++complete;
} catch (...) {
exception_.Catch(std::current_exception());
--remaining_;
complete_q->Push(-1UL);
return;
}
auto &outputs = op_to_run->Outputs();
op_to_run = nullptr;
for (auto &output : outputs) {
for (auto &pending_op : output->PendingOps()) {
std::atomic<int> &deps = op_deps->at(pending_op);
if (deps.fetch_sub(1) == 1) { // pending_op ready
if (op_to_run == nullptr) {
op_to_run = pending_op;
} else {
this->RunOpAsync(op_deps, pending_op, complete_q);
}
}
}
}
}
--remaining_;
complete_q->Push(complete);
});
}
void FastThreadedSSAGraphExecutor::PrepareAtomicOpDeps() {
atomic_op_deps_ = pool_.enqueue([&] {
std::unordered_map<OpHandleBase *, std::atomic<int>> *op_deps =
new std::unordered_map<OpHandleBase *, std::atomic<int>>;
for (auto &pair : op_deps_) {
(*op_deps)[pair.first] = pair.second;
}
return std::unique_ptr<
std::unordered_map<OpHandleBase *, std::atomic<int>>>(op_deps);
});
}
const ir::Graph &FastThreadedSSAGraphExecutor::Graph() const { return *graph_; }
} // namespace details
} // namespace framework
} // namespace paddle

@ -0,0 +1,64 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/exception_holder.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
namespace paddle {
namespace framework {
class Scope;
namespace details {
class OpHandleBase;
class FastThreadedSSAGraphExecutor : public SSAGraphExecutor {
public:
FastThreadedSSAGraphExecutor(const ExecutionStrategy &strategy,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
std::unique_ptr<ir::Graph> &&graph);
FeedFetchList Run(const std::vector<std::string> &fetch_tensors) override;
const ir::Graph &Graph() const override;
private:
ExecutionStrategy strategy_;
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
std::unique_ptr<ir::Graph> graph_;
std::unordered_map<OpHandleBase *, int> op_deps_;
std::vector<OpHandleBase *> bootstrap_ops_;
::ThreadPool pool_;
platform::DeviceContextPool fetch_ctxs_;
std::atomic<int> remaining_;
void RunOpAsync(std::unordered_map<OpHandleBase *, std::atomic<int>> *op_deps,
OpHandleBase *op, BlockingQueue<size_t> *complete_q);
void PrepareAtomicOpDeps();
std::future<
std::unique_ptr<std::unordered_map<OpHandleBase *, std::atomic<int>>>>
atomic_op_deps_;
ExceptionHolder exception_;
};
} // namespace details
} // namespace framework
} // namespace paddle

@ -158,6 +158,16 @@ void OpHandleBase::RunAndRecordEvent(platform::Place p,
#endif
}
size_t OpHandleBase::NotReadyInputSize() const {
std::unordered_set<VarHandleBase *> res;
for (auto *var : inputs_) {
if (var->GeneratedOp() != nullptr) {
res.emplace(var);
}
}
return res.size();
}
} // namespace details
} // namespace framework
} // namespace paddle

@ -81,6 +81,8 @@ class OpHandleBase {
return res.size();
}
size_t NotReadyInputSize() const;
const std::vector<VarHandleBase *> &Outputs() const { return outputs_; }
size_t NoDummyInputSize() const;

@ -5,8 +5,12 @@ cc_library(pass SRCS pass.cc DEPS graph node graph_helper)
cc_library(graph_viz_pass SRCS graph_viz_pass.cc DEPS graph pass graph_helper)
cc_library(graph_traits SRCS graph_traits.cc DEPS graph)
cc_library(graph_pattern_detecter SRCS graph_pattern_detecter.cc DEPS graph graph_helper graph_traits)
cc_library(fc_fuse_pass SRCS fc_fuse_pass.cc DEPS graph graph_pattern_detecter)
cc_library(infer_clean_graph_pass SRCS infer_clean_graph_pass.cc DEPS graph pass)
cc_test(pass_test SRCS pass_test.cc DEPS graph pass graph_helper)
cc_test(graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry)
cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry)
cc_test(test_graph_pattern_detecter SRCS graph_pattern_detecter_tester.cc DEPS graph_pattern_detecter)
cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass graph_pattern_detecter graph pass graph_traits framework_proto)

@ -0,0 +1,192 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/fc_fuse_pass.h"
#include <string>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
namespace ir {
bool VarOutLinksToOp(Node* node, const std::string& op_type) {
for (auto* out : node->outputs) {
if (out->IsOp() && out->Op()->Type() == op_type) {
return true;
}
}
return false;
}
void BuildFCPattern(PDPattern* pattern) {
// make sure the selected MUL op has one input argument is a parameter.
auto* mul_parameter_var = pattern->NewNode(
[](Node* node) {
return node->IsVar() && node->outputs.size() == 1UL &&
node->outputs.front()->Op()->Type() == "mul" && node->Var() &&
node->Var()->Persistable(); // check is a parameter
},
"mul_weight" /*name*/);
auto* mul_tmp_input_var = pattern->NewNode(
[](Node* node) {
bool result =
node->IsVar() && node->outputs.size() >= 1UL && node->Var() &&
!node->Var()->Persistable(); // this input is not an parameter.
if (!result) return false;
// check whether one output is MUL op.
for (auto* op : node->outputs) {
if (op->IsOp() && op->Op()->Type() == "mul") return true;
}
return false;
},
"mul_tmp_var" /*name*/);
// select a MUL op
auto* mul_op = pattern->NewNode(
[](Node* node) {
return node->IsOp() && // start from an Op
node->Op()->Type() == "mul"; // type is mul
// the output should be consumed only by one element_add, that check
// leaves in a Var PDNode.
},
"mul" /*name*/);
// make sure the MUL op's output has only one consumer and links to an
// ELEMENTWISE_ADD op.
auto* mul_out_var = pattern->NewNode(
[](Node* node) {
return node->IsVar() && // starts from a Var
node->outputs.size() == 1UL && // only has one consumer
node->outputs.front()->IsOp() && // check basic logic
node->Var() && // not a ControlDepVar
node->outputs.front()->Op()->Type() ==
"elementwise_add"; // a very strong validation
},
"mul_out");
// this check is not essential, just to make the corresponding variable Node
// retrival easier.
auto* elementwise_add_tmp_var = pattern->NewNode(
[](Node* node) {
return node->IsVar() && node->outputs.size() >= 1UL && node->Var() &&
VarOutLinksToOp(node, "elementwise_add");
},
"elementwise_add_tmpvar");
// select an ELEMENTWISE_ADD op
auto* elementwise_add_op = pattern->NewNode(
[](Node* node) {
return node->IsOp() && node->Op()->Type() == "elementwise_add";
},
"elementwise_add" /*name*/);
// get the ELEMENTWISE_ADD op's output
auto* elementwise_add_out_var = pattern->NewNode(
[](Node* node) {
return node->IsVar() && node->inputs.size() == 1UL && node->Var() &&
node->inputs.front()->Op()->Type() == "elementwise_add";
},
"elementwise_add_out");
pattern->AddEdge(mul_parameter_var, mul_op);
pattern->AddEdge(mul_tmp_input_var, mul_op);
pattern->AddEdge(mul_op, mul_out_var);
pattern->AddEdge(mul_out_var, elementwise_add_op);
pattern->AddEdge(elementwise_add_tmp_var, elementwise_add_op);
pattern->AddEdge(elementwise_add_op, elementwise_add_out_var);
}
// Replace the node `from` in the links to `to`
bool LinksReplace(std::vector<Node*>* links, Node* from, Node* to) {
for (auto*& n : *links) {
if (n == from) {
n = to;
return true;
}
}
return false;
}
std::unique_ptr<ir::Graph> FCFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PADDLE_ENFORCE(graph.get());
std::unordered_set<Node*> nodes2delete;
GraphPatternDetecter gpd;
BuildFCPattern(gpd.mutable_pattern());
#define GET_NODE(id) \
PADDLE_ENFORCE(subgraph.count(gpd.pattern().RetriveNode(#id)), \
"pattern has no Node called %s", #id); \
auto* id = subgraph.at(gpd.pattern().RetriveNode(#id)); \
PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", #id);
auto handler = [&](const GraphPatternDetecter::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "handle FC fuse";
// Currently, there is no FC op available, so I will just simulate the
// scenerio.
// FC's fusion is simple, just op fuse, no need to process the
// parameters.
GET_NODE(mul_tmp_var); // x
GET_NODE(mul_weight); // Y
GET_NODE(elementwise_add_tmpvar); // bias
GET_NODE(elementwise_add_out); // Out
GET_NODE(mul); // MUL op
GET_NODE(elementwise_add); // ELEMENT_ADD op
GET_NODE(mul_out); // tmp
#undef GET_NODE
// Create an FC Node.
OpDesc desc;
std::string fc_x_in = mul_tmp_var->Name();
std::string fc_Y_in = mul_weight->Name();
std::string fc_bias_in = elementwise_add_tmpvar->Name();
std::string fc_out = elementwise_add_out->Name();
desc.SetInput("Input", std::vector<std::string>({fc_x_in}));
desc.SetInput("W", std::vector<std::string>({fc_Y_in}));
desc.SetInput("Bias", std::vector<std::string>({fc_bias_in}));
desc.SetOutput("Out", std::vector<std::string>({fc_out}));
desc.SetType("fc");
auto fc_node = g->CreateOpNode(&desc); // OpDesc will be copied.
fc_node->inputs =
std::vector<Node*>({mul_tmp_var, mul_weight, elementwise_add_tmpvar});
fc_node->outputs.push_back(elementwise_add_out);
// Update link relatons
PADDLE_ENFORCE(LinksReplace(&mul_tmp_var->outputs, mul, fc_node));
PADDLE_ENFORCE(LinksReplace(&mul_weight->outputs, mul, fc_node));
PADDLE_ENFORCE(LinksReplace(&elementwise_add_tmpvar->outputs,
elementwise_add, fc_node));
PADDLE_ENFORCE(
LinksReplace(&elementwise_add_out->inputs, elementwise_add, fc_node));
// Drop old nodes
graph->RemoveNode(mul);
graph->RemoveNode(elementwise_add);
graph->RemoveNode(mul_out); // tmp variable
};
gpd(graph.get(), handler);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(fc_fuse_pass, paddle::framework::ir::FCFusePass);

@ -12,15 +12,25 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detecter.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
fill_constant,
ops::FillConstantOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::FillConstantOpKernel<paddle::platform::CUDADeviceContext, double>,
ops::FillConstantOpKernel<paddle::platform::CUDADeviceContext, int>,
ops::FillConstantOpKernel<paddle::platform::CUDADeviceContext, int64_t>,
ops::FillConstantOpKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>)
namespace paddle {
namespace framework {
namespace ir {
/*
* Fuse the MUL and ELEMENTWISE_ADD to a FCOp.
*/
class FCFusePass : public Pass {
public:
virtual ~FCFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
};
} // namespace ir
} // namespace framework
} // namespace paddle

@ -0,0 +1,90 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/fc_fuse_pass.h"
#include <gtest/gtest.h>
namespace paddle {
namespace framework {
namespace ir {
void SetOp(ProgramDesc* prog, const std::string& type,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs) {
auto* op = prog->MutableBlock(0)->AppendOp();
op->SetType(type);
op->SetInput("Xs", inputs);
op->SetOutput("Ys", outputs);
}
// a->OP0->b
// a->OP1->c
// (b, c)->mul->d
// (d, e)->elementwise_add->f
ProgramDesc BuildProgramDesc() {
ProgramDesc prog;
for (auto& v : std::vector<std::string>({"a", "b", "c", "d", "e", "f"})) {
auto* var = prog.MutableBlock(0)->Var(v);
var->SetType(proto::VarType::SELECTED_ROWS);
if (v == "c") {
var->SetPersistable(true);
}
}
SetOp(&prog, "OP0", std::vector<std::string>({"a"}),
std::vector<std::string>({"b"}));
SetOp(&prog, "OP1", std::vector<std::string>({"a"}),
std::vector<std::string>({"c"}));
SetOp(&prog, "mul", std::vector<std::string>({"b", "c"}),
std::vector<std::string>({"d"}));
SetOp(&prog, "elementwise_add", std::vector<std::string>({"d", "e"}),
std::vector<std::string>({"f"}));
return prog;
}
TEST(FCFusePass, basic) {
auto prog = BuildProgramDesc();
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
auto pass = PassRegistry::Instance().Get("fc_fuse_pass");
int pre_nodes = graph->Nodes().size();
graph = pass->Apply(std::move(graph));
int after_nodes = graph->Nodes().size();
// Remove 3 Nodes: MUL,ELEMENTWISE_ADD, mul_out
// Add 1 Node: FC
EXPECT_EQ(pre_nodes - 2, after_nodes);
// Assert fc op in newly generated graph
int fc_count = 0;
for (auto* node : graph->Nodes()) {
if (node->IsOp() && node->Op()->Type() == "fc") {
++fc_count;
}
}
EXPECT_EQ(fc_count, 1);
}
} // namespace ir
} // namespace framework
} // namespace paddle
USE_PASS(fc_fuse_pass);

@ -117,7 +117,15 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
}
// For output args, always create a new var.
for (auto &each_var_name : op->OutputArgumentNames()) {
ir::Node *var = CreateVarNode(all_vars.at(each_var_name));
ir::Node *var = nullptr;
if (all_vars.count(each_var_name) != 0) {
var = CreateVarNode(all_vars.at(each_var_name));
} else {
// Operation output vars can be @EMPTY@. For example, while_grad
// can have multi @EMPTY@ outputs with no VarDesc.
// TODO(panyx0718): Add a test.
var = CreateEmptyNode(each_var_name, ir::Node::Type::kVariable);
}
var_nodes[each_var_name].push_back(var);
node->outputs.push_back(var);
var->inputs.push_back(node);
@ -208,7 +216,8 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
// Add write after write dependence
ir::Node *upstream_op =
(*it_old)->inputs.empty() ? nullptr : (*it_old)->inputs[0];
if (upstream_op) {
// TODO(zcd): Add a test.
if (upstream_op && upstream_op != write_op) {
ir::Node *dep_var = CreateControlDepVar();
write_op->inputs.push_back(dep_var);
upstream_op->outputs.push_back(dep_var);

@ -98,11 +98,13 @@ class Graph {
// Create a normal variable with non-null VarDesc.
ir::Node *CreateVarNode(VarDesc *var_desc) {
PADDLE_ENFORCE(var_desc);
return AddNode(new ir::Node(var_desc));
}
// Create a normal runnable operator with OpDesc.
ir::Node *CreateOpNode(OpDesc *op_desc) {
PADDLE_ENFORCE(op_desc);
return AddNode(new ir::Node(op_desc));
}
@ -134,6 +136,14 @@ class Graph {
return ret;
}
void RemoveNode(ir::Node *node) {
PADDLE_ENFORCE(node_set_.find(node) != node_set_.end());
node_set_.erase(node);
nodes_.erase(node);
}
const ProgramDesc &program() const { return program_; }
private:
// This method takes ownership of `node`.
ir::Node *AddNode(ir::Node *node) {
@ -143,12 +153,6 @@ class Graph {
return node;
}
void RemoveNode(ir::Node *node) {
PADDLE_ENFORCE(node_set_.find(node) != node_set_.end());
node_set_.erase(node);
nodes_.erase(node);
}
// NOTE: program_ shouldn't be exposed to user.
const ProgramDesc &program_;
std::map<std::string, boost::any> attrs_;

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save