parent
2a54ddd267
commit
37f933b8ad
@ -0,0 +1,136 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <thrust/device_vector.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
#include <thrust/host_vector.h>
|
||||
#include <thrust/reduce.h>
|
||||
#include "paddle/operators/sequence_erase_op.h"
|
||||
#include "paddle/platform/cuda_helper.h"
|
||||
#include "paddle/platform/gpu_info.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
using platform::PADDLE_CUDA_NUM_THREADS;
|
||||
using Tensor = framework::Tensor;
|
||||
using LoDTensor = framework::LoDTensor;
|
||||
|
||||
template <typename T>
|
||||
__global__ void LabelErasedIdx(const T* in_dat, const int in_len,
|
||||
const T* tokens, const int tokens_len,
|
||||
int* num_erased) {
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (index < in_len) {
|
||||
int erased = 0;
|
||||
for (int i = 0; i < tokens_len; ++i) {
|
||||
if (in_dat[index] == tokens[i]) {
|
||||
erased = 1;
|
||||
}
|
||||
}
|
||||
num_erased[index + 1] = erased;
|
||||
if (index == 0) {
|
||||
num_erased[0] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void GetOutLod(const T* num_erased, const int* in_lod,
|
||||
const int lod_len, int* out_lod0) {
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (index < lod_len) {
|
||||
out_lod0[index] = in_lod[index] - num_erased[in_lod[index]];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void SetOutput(const T* in_dat, const int in_len,
|
||||
const int* num_erased, T* out_dat) {
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (index < in_len) {
|
||||
if (in_dat[index] != in_dat[index + 1]) {
|
||||
out_dat[index - num_erased[index]] = in_dat[index];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* in = ctx.Input<LoDTensor>("X");
|
||||
auto* out = ctx.Output<LoDTensor>("Out");
|
||||
|
||||
auto lod = in->lod();
|
||||
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
||||
auto tokens = ctx.Attr<std::vector<T>>("tokens");
|
||||
auto tokens_len = tokens.size();
|
||||
auto in_len = in->numel();
|
||||
auto in_dat = in->data<T>();
|
||||
auto lod0 = lod[0];
|
||||
|
||||
thrust::host_vector<T> host_tokens(tokens_len);
|
||||
for (size_t i = 0; i < tokens.size(); ++i) {
|
||||
host_tokens[i] = tokens[i];
|
||||
}
|
||||
thrust::device_vector<T> dev_tokens = host_tokens;
|
||||
thrust::device_vector<int> num_erased(in_len + 1);
|
||||
|
||||
T* dev_tokens_ptr = thrust::raw_pointer_cast(dev_tokens.data());
|
||||
int* num_erased_ptr = thrust::raw_pointer_cast(num_erased.data());
|
||||
|
||||
auto stream = ctx.cuda_device_context().stream();
|
||||
LabelErasedIdx<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
||||
in_dat, in_len, dev_tokens_ptr, tokens_len, num_erased_ptr);
|
||||
thrust::inclusive_scan(num_erased.begin() + 1, num_erased.end(),
|
||||
num_erased.begin() + 1);
|
||||
|
||||
// Reset LoD
|
||||
auto lod_len = lod0.size();
|
||||
thrust::host_vector<int> host_lod(lod_len);
|
||||
for (size_t i = 0; i < lod_len; ++i) {
|
||||
host_lod[i] = lod0[i];
|
||||
}
|
||||
thrust::device_vector<int> dev_in_lod = host_lod;
|
||||
thrust::device_vector<int> dev_out_lod(lod_len);
|
||||
int* dev_in_lod_ptr = thrust::raw_pointer_cast(dev_in_lod.data());
|
||||
int* dev_out_lod_ptr = thrust::raw_pointer_cast(dev_out_lod.data());
|
||||
GetOutLod<<<(lod_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
||||
num_erased_ptr, dev_in_lod_ptr, lod_len, dev_out_lod_ptr);
|
||||
thrust::host_vector<int> host_out_lod = dev_out_lod;
|
||||
std::vector<int> out_lod0(lod_len, 0);
|
||||
for (size_t i = 0; i < lod_len; i++) {
|
||||
out_lod0[i] = host_out_lod[i];
|
||||
}
|
||||
framework::LoD out_lod;
|
||||
out_lod.push_back(out_lod0);
|
||||
|
||||
out->Resize({out_lod0.back(), 1});
|
||||
// Set output
|
||||
auto out_dat = out->mutable_data<T>(ctx.GetPlace());
|
||||
SetOutput<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
||||
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_dat, in_len,
|
||||
num_erased_ptr, out_dat);
|
||||
// Set LoD
|
||||
out->set_lod(out_lod);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(sequence_erase,
|
||||
paddle::operators::SequenceEraseOpCUDAKernel<int32_t>);
|
Loading…
Reference in new issue