|
|
|
@ -277,28 +277,28 @@ def piecewise_decay(boundaries, values):
|
|
|
|
|
|
|
|
|
|
global_step = _decay_step_counter()
|
|
|
|
|
|
|
|
|
|
with init_on_cpu():
|
|
|
|
|
lr = tensor.create_global_var(
|
|
|
|
|
shape=[1],
|
|
|
|
|
value=0.0,
|
|
|
|
|
dtype='float32',
|
|
|
|
|
persistable=True,
|
|
|
|
|
name="learning_rate")
|
|
|
|
|
|
|
|
|
|
with control_flow.Switch() as switch:
|
|
|
|
|
for i in range(len(boundaries)):
|
|
|
|
|
boundary_val = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=float(boundaries[i]))
|
|
|
|
|
value_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=float(values[i]))
|
|
|
|
|
with switch.case(global_step < boundary_val):
|
|
|
|
|
tensor.assign(value_var, lr)
|
|
|
|
|
last_value_var = tensor.fill_constant(
|
|
|
|
|
lr = tensor.create_global_var(
|
|
|
|
|
shape=[1],
|
|
|
|
|
value=0.0,
|
|
|
|
|
dtype='float32',
|
|
|
|
|
persistable=True,
|
|
|
|
|
name="learning_rate")
|
|
|
|
|
|
|
|
|
|
with control_flow.Switch() as switch:
|
|
|
|
|
for i in range(len(boundaries)):
|
|
|
|
|
boundary_val = tensor.fill_constant(
|
|
|
|
|
shape=[1],
|
|
|
|
|
dtype='float32',
|
|
|
|
|
value=float(values[len(values) - 1]))
|
|
|
|
|
with switch.default():
|
|
|
|
|
tensor.assign(last_value_var, lr)
|
|
|
|
|
value=float(boundaries[i]),
|
|
|
|
|
force_cpu=True)
|
|
|
|
|
value_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=float(values[i]))
|
|
|
|
|
with switch.case(global_step < boundary_val):
|
|
|
|
|
tensor.assign(value_var, lr)
|
|
|
|
|
last_value_var = tensor.fill_constant(
|
|
|
|
|
shape=[1], dtype='float32', value=float(values[len(values) - 1]))
|
|
|
|
|
with switch.default():
|
|
|
|
|
tensor.assign(last_value_var, lr)
|
|
|
|
|
|
|
|
|
|
return lr
|
|
|
|
|
|
|
|
|
@ -333,9 +333,9 @@ def append_LARS(params_grads, learning_rate, weight_decay):
|
|
|
|
|
grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
|
|
|
|
|
if type(param_lr) == float and param_lr == 1.0:
|
|
|
|
|
decayed_lr = learning_rate * param_norm \
|
|
|
|
|
/ _balanced_weight(param_norm, grad_norm)
|
|
|
|
|
/ _balanced_weight(param_norm, grad_norm)
|
|
|
|
|
else:
|
|
|
|
|
decayed_lr = learning_rate * param_lr * param_norm \
|
|
|
|
|
/ _balanced_weight(param_norm, grad_norm)
|
|
|
|
|
/ _balanced_weight(param_norm, grad_norm)
|
|
|
|
|
# set back param local learning rate
|
|
|
|
|
param.optimize_attr['learning_rate'] = decayed_lr
|
|
|
|
|