【NPU】Support npu op gelu and gelu_grad (#31530)
* Support npu op gelu and gelu_grad * Support npu op gelu and gelu_gradrevert-31562-mean
parent
5d29a27c2e
commit
382fc31f89
@ -0,0 +1,89 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "paddle/fluid/operators/gelu_op.h"
|
||||
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class GeluNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<Tensor>("X");
|
||||
|
||||
auto* out = ctx.Output<Tensor>("Out");
|
||||
|
||||
auto place = ctx.GetPlace();
|
||||
|
||||
out->mutable_data<T>(place);
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
|
||||
auto runner = NpuOpRunner("Gelu", {*x}, {*out}, {});
|
||||
runner.Run(stream);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class GeluGradNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<Tensor>("X");
|
||||
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||
|
||||
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
|
||||
auto place = ctx.GetPlace();
|
||||
|
||||
dx->mutable_data<T>(place);
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
|
||||
Tensor out(x->type());
|
||||
out.mutable_data<T>(x->dims(), place);
|
||||
auto out_runner = NpuOpRunner("Gelu", {*x}, {out}, {});
|
||||
out_runner.Run(stream);
|
||||
|
||||
auto dx_runner = NpuOpRunner("GeluGrad", {*dout, *x, out}, {*dx}, {});
|
||||
dx_runner.Run(stream);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
gelu,
|
||||
ops::GeluNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::GeluNPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
||||
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
gelu_grad,
|
||||
ops::GeluGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::GeluGradNPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
||||
@ -0,0 +1,169 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifndef _WIN32
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <string>
|
||||
#include <thread> // NOLINT
|
||||
#include <vector>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/operator.h"
|
||||
#include "paddle/fluid/framework/program_desc.h"
|
||||
#include "paddle/fluid/operators/dropout_op.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
#include "paddle/fluid/string/printf.h"
|
||||
|
||||
namespace f = paddle::framework;
|
||||
namespace p = paddle::platform;
|
||||
namespace m = paddle::operators::math;
|
||||
|
||||
USE_OP(gelu);
|
||||
USE_OP_DEVICE_KERNEL(gelu, NPU);
|
||||
|
||||
template <typename T>
|
||||
void Compare(f::Scope* scope, const p::DeviceContext& ctx) {
|
||||
// init
|
||||
auto x = scope->Var("X");
|
||||
auto tensor_x = x->GetMutable<f::LoDTensor>();
|
||||
|
||||
std::vector<T> init_x;
|
||||
for (int64_t i = 0; i < 10 * 10; ++i) {
|
||||
init_x.push_back(static_cast<T>(1.0));
|
||||
}
|
||||
|
||||
TensorFromVector(init_x, ctx, tensor_x);
|
||||
tensor_x->Resize({10, 10});
|
||||
|
||||
auto out = scope->Var("Out");
|
||||
auto tensor_out = out->GetMutable<f::LoDTensor>();
|
||||
|
||||
f::AttributeMap attrs;
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
// run
|
||||
auto place = ctx.GetPlace();
|
||||
|
||||
auto op = f::OpRegistry::CreateOp("gelu", {{"X", {"X"}}},
|
||||
{{"Out", {"Out"}}}, attrs);
|
||||
op->Run(*scope, place);
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
// eval time
|
||||
struct timeval start, end;
|
||||
gettimeofday(&start, NULL);
|
||||
|
||||
for (int i = 0; i < 100; i++) {
|
||||
op->Run(*scope, place);
|
||||
}
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
gettimeofday(&end, NULL);
|
||||
int micros = (((end.tv_sec - start.tv_sec) * 1000000) +
|
||||
end.tv_usec) - (start.tv_usec);
|
||||
printf("used time: %d\n", micros / 100);
|
||||
|
||||
// eval value
|
||||
std::vector<T> out_vec;
|
||||
TensorToVector(*tensor_out, ctx, &out_vec);
|
||||
|
||||
float expected = 0.841192;
|
||||
for (uint32_t i = 0; i < out_vec.size(); i++) {
|
||||
EXPECT_FLOAT_EQ(out_vec[i], static_cast<T>(expected));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx) {
|
||||
auto dout = scope->Var("DOut");
|
||||
auto tensor_dout = dout->GetMutable<f::LoDTensor>();
|
||||
|
||||
auto x = scope->Var("X");
|
||||
auto tensor_x = x->GetMutable<f::LoDTensor>();
|
||||
|
||||
std::vector<T> init_dout;
|
||||
for (int64_t i = 0; i < 10 * 10; ++i) {
|
||||
init_dout.push_back(static_cast<T>(1.0));
|
||||
}
|
||||
|
||||
std::vector<T> init_x;
|
||||
for (int64_t i = 0; i < 10 * 10; ++i) {
|
||||
init_x.push_back(static_cast<T>(1.0));
|
||||
}
|
||||
|
||||
TensorFromVector(init_dout, ctx, tensor_dout);
|
||||
tensor_dout->Resize({10, 10});
|
||||
TensorFromVector(init_x, ctx, tensor_x);
|
||||
tensor_x->Resize({10, 10});
|
||||
|
||||
auto dx = scope->Var("DX");
|
||||
auto tensor_dx = dx->GetMutable<f::LoDTensor>();
|
||||
|
||||
f::AttributeMap attrs;
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
// run
|
||||
auto place = ctx.GetPlace();
|
||||
|
||||
auto op = f::OpRegistry::CreateOp("gelu_grad",
|
||||
{{"Out@GRAD", {"DOut"}}, {"X", {"X"}}},
|
||||
{{"X@GRAD", {"DX"}}}, attrs);
|
||||
op->Run(*scope, place);
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
// eval time
|
||||
struct timeval start, end;
|
||||
gettimeofday(&start, NULL);
|
||||
|
||||
for (int i = 0; i < 100; i++) {
|
||||
op->Run(*scope, place);
|
||||
}
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
gettimeofday(&end, NULL);
|
||||
int micros = (((end.tv_sec - start.tv_sec) * 1000000) +
|
||||
end.tv_usec) - (start.tv_usec);
|
||||
printf("used time: %d\n", micros / 100);
|
||||
|
||||
// eval value
|
||||
std::vector<T> dx_vec;
|
||||
TensorToVector(*tensor_dx, ctx, &dx_vec);
|
||||
|
||||
float expected = 1.082964;
|
||||
for (uint32_t i = 0; i < dx_vec.size(); i++) {
|
||||
EXPECT_FLOAT_EQ(dx_vec[i], static_cast<T>(expected));
|
||||
}
|
||||
}
|
||||
|
||||
TEST(gelu, NPU_fp32) {
|
||||
f::Scope scope;
|
||||
p::NPUDeviceContext ctx(p::NPUPlace(0));
|
||||
Compare<float>(&scope, ctx);
|
||||
}
|
||||
|
||||
TEST(gelu_grad, NPU) {
|
||||
f::Scope scope;
|
||||
p::NPUDeviceContext ctx(p::NPUPlace(0));
|
||||
CompareGrad<float>(&scope, ctx);
|
||||
}
|
||||
|
||||
@ -0,0 +1,160 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
from scipy import special
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
def np_gelu(x):
|
||||
y = 0.5 * x * (1 + special.erf(x / np.sqrt(2)))
|
||||
return y
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestGelu(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "gelu"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
|
||||
out = np_gelu(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-3)
|
||||
|
||||
# TODO(ascendrc): Add grad test
|
||||
# def test_check_grad(self):
|
||||
# if self.dtype == np.float16:
|
||||
# return
|
||||
# self.check_grad(['X'], 'Out')
|
||||
#
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestGeluFp16(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "gelu"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
|
||||
self.init_dtype()
|
||||
np.random.seed(SEED)
|
||||
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
|
||||
out = np_gelu(x)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.attrs = {}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
self.__class__.no_need_check_grad = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float16
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-3)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestGeluNet(unittest.TestCase):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
b_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[32, 1], dtype='int64')
|
||||
|
||||
c = paddle.multiply(a, b)
|
||||
d = fluid.layers.gelu(c)
|
||||
|
||||
fc_1 = fluid.layers.fc(input=d, size=128)
|
||||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.reduce_mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(
|
||||
main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np,
|
||||
"label": label_np},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred, atol=1e-3))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss, atol=1e-3))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Loading…
Reference in new issue