|
|
|
@ -42,7 +42,7 @@ def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
|
|
|
|
|
size=class_dim,
|
|
|
|
|
act="softmax")
|
|
|
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
|
accuracy = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
|
return avg_cost, accuracy, prediction
|
|
|
|
|
|
|
|
|
@ -82,7 +82,7 @@ def dyn_rnn_lstm(data, label, input_dim, class_dim=2, emb_dim=32,
|
|
|
|
|
last = fluid.layers.sequence_last_step(rnn())
|
|
|
|
|
prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
|
|
|
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
|
accuracy = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
|
return avg_cost, accuracy, prediction
|
|
|
|
|
|
|
|
|
@ -119,7 +119,7 @@ def stacked_lstm_net(data,
|
|
|
|
|
size=class_dim,
|
|
|
|
|
act='softmax')
|
|
|
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
|
accuracy = fluid.layers.accuracy(input=prediction, label=label)
|
|
|
|
|
return avg_cost, accuracy, prediction
|
|
|
|
|
|
|
|
|
@ -158,8 +158,8 @@ def train(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
|
|
|
|
|
pd.write_output(acc)
|
|
|
|
|
|
|
|
|
|
cost, acc = pd()
|
|
|
|
|
cost = fluid.layers.mean(x=cost)
|
|
|
|
|
acc_out = fluid.layers.mean(x=acc)
|
|
|
|
|
cost = fluid.layers.mean(cost)
|
|
|
|
|
acc_out = fluid.layers.mean(acc)
|
|
|
|
|
prediction = None
|
|
|
|
|
assert save_dirname is None
|
|
|
|
|
|
|
|
|
|