parent
a2393fc1bd
commit
3994e91a67
@ -0,0 +1,207 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/reduce_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
using framework::DDim;
|
||||
|
||||
class ReduceOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||
auto x_rank = x_dims.size();
|
||||
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported");
|
||||
int dim = static_cast<int>(ctx.Attr<int>("dim"));
|
||||
if (dim < 0) dim = x_rank + dim;
|
||||
PADDLE_ENFORCE_LT(
|
||||
dim, x_rank,
|
||||
"The dim should be in the range [-rank(input), rank(input)]");
|
||||
bool keep_dim = true; // TODO;
|
||||
auto dims_vector = vectorize(x_dims);
|
||||
if (keep_dim || x_rank == 1) {
|
||||
dims_vector[dim] = 1;
|
||||
} else {
|
||||
dims_vector.erase(dims_vector.begin() + dim);
|
||||
}
|
||||
auto out_dims = framework::make_ddim(dims_vector);
|
||||
ctx.Output<Tensor>("Out")->Resize(out_dims);
|
||||
}
|
||||
};
|
||||
|
||||
class ReduceGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null");
|
||||
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||
auto x_rank = x_dims.size();
|
||||
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported");
|
||||
int dim = static_cast<int>(ctx.Attr<int>("dim"));
|
||||
if (dim < 0) dim = x_rank + dim;
|
||||
PADDLE_ENFORCE_LT(
|
||||
dim, x_rank,
|
||||
"The dim should be in the range [-rank(input), rank(input)]");
|
||||
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
if (x_grad) x_grad->Resize(x_dims);
|
||||
}
|
||||
};
|
||||
|
||||
class ReduceSumOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ReduceSumOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(
|
||||
"X",
|
||||
"(Tensor) The input tensor. Tensors with rank at most 6 are supported");
|
||||
AddOutput("Out", "(Tensor) The result tensor.");
|
||||
AddComment(R"DOC(
|
||||
ReduceMean operator computes the sum of input tensor along the given dimension.
|
||||
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
|
||||
)DOC");
|
||||
AddAttr<int>("dim",
|
||||
"(int, default 0) The dimension to reduce. "
|
||||
"Must be in the range [-rank(input), rank(input)]")
|
||||
.SetDefault(0);
|
||||
AddAttr<bool>("keep_dim",
|
||||
"(bool, default fasle) "
|
||||
"If true, retain the reduced dimension with length 1.")
|
||||
.SetDefault(false);
|
||||
}
|
||||
};
|
||||
|
||||
class ReduceMeanOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ReduceMeanOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(
|
||||
"X",
|
||||
"(Tensor) The input tensor. Tensors with rank at most 6 are supported");
|
||||
AddOutput("Out", "(Tensor) The result tensor.");
|
||||
AddComment(R"DOC(
|
||||
ReduceMean operator computes the mean of input tensor along the given dimension.
|
||||
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
|
||||
)DOC");
|
||||
AddAttr<int>("dim",
|
||||
"(int, default 0) The dimension to reduce. "
|
||||
"Must be in the range [-rank(input), rank(input)]")
|
||||
.SetDefault(0);
|
||||
AddAttr<bool>("keep_dim",
|
||||
"(bool, default fasle) "
|
||||
"If true, retain the reduced dimension with length 1.")
|
||||
.SetDefault(false);
|
||||
}
|
||||
};
|
||||
|
||||
class ReduceMaxOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ReduceMaxOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(
|
||||
"X",
|
||||
"(Tensor) The input tensor. Tensors with rank at most 6 are supported");
|
||||
AddOutput("Out", "(Tensor) The result tensor.");
|
||||
AddComment(R"DOC(
|
||||
ReduceMax operator computes the maximum of input tensor along the given dimension.
|
||||
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
|
||||
)DOC");
|
||||
AddAttr<int>("dim",
|
||||
"(int, default 0) The dimension to reduce. "
|
||||
"Must be in the range [-rank(input), rank(input)]")
|
||||
.SetDefault(0);
|
||||
AddAttr<bool>("keep_dim",
|
||||
"(bool, default fasle) "
|
||||
"If true, retain the reduced dimension with length 1.")
|
||||
.SetDefault(false);
|
||||
}
|
||||
};
|
||||
|
||||
class ReduceMinOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ReduceMinOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(
|
||||
"X",
|
||||
"(Tensor) The input tensor. Tensors with rank at most 6 are supported");
|
||||
AddOutput("Out", "(Tensor) The result tensor.");
|
||||
AddComment(R"DOC(
|
||||
ReduceMin operator computes the minimum of input tensor along the given dimension.
|
||||
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
|
||||
)DOC");
|
||||
AddAttr<int>("dim",
|
||||
"(int, default 0) The dimension to reduce. "
|
||||
"Must be in the range [-rank(input), rank(input)]")
|
||||
.SetDefault(0);
|
||||
AddAttr<bool>("keep_dim",
|
||||
"(bool, default fasle) "
|
||||
"If true, retain the reduced dimension with length 1.")
|
||||
.SetDefault(false);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad,
|
||||
ops::ReduceGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
reduce_sum,
|
||||
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::SumFunctor>);
|
||||
REGISTER_OP_CPU_KERNEL(reduce_sum_grad,
|
||||
ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
|
||||
ops::SumGradFunctor>);
|
||||
|
||||
REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker,
|
||||
reduce_mean_grad, ops::ReduceGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
reduce_mean,
|
||||
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MeanFunctor>);
|
||||
REGISTER_OP_CPU_KERNEL(reduce_mean_grad,
|
||||
ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
|
||||
ops::MeanGradFunctor>);
|
||||
|
||||
REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
|
||||
ops::ReduceGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
reduce_max,
|
||||
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MaxFunctor>);
|
||||
REGISTER_OP_CPU_KERNEL(reduce_max_grad,
|
||||
ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
|
||||
ops::MaxOrMinGradFunctor>);
|
||||
|
||||
REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_min_grad,
|
||||
ops::ReduceGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
reduce_min,
|
||||
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::MinFunctor>);
|
||||
REGISTER_OP_CPU_KERNEL(reduce_min_grad,
|
||||
ops::ReduceGradKernel<paddle::platform::CPUPlace, float,
|
||||
ops::MaxOrMinGradFunctor>);
|
@ -0,0 +1,46 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/reduce_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
reduce_sum,
|
||||
ops::ReduceKernel<paddle::platform::GPUPlace, float, ops::SumFunctor>);
|
||||
REGISTER_OP_GPU_KERNEL(reduce_sum_grad,
|
||||
ops::ReduceGradEigenKernel<paddle::platform::GPUPlace,
|
||||
float, ops::SumGradFunctor>);
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
reduce_mean,
|
||||
ops::ReduceKernel<paddle::platform::GPUPlace, float, ops::MeanFunctor>);
|
||||
REGISTER_OP_GPU_KERNEL(reduce_mean_grad,
|
||||
ops::ReduceGradKernel<paddle::platform::GPUPlace, float,
|
||||
ops::MeanGradFunctor>);
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
reduce_max,
|
||||
ops::ReduceKernel<paddle::platform::GPUPlace, float, ops::MaxFunctor>);
|
||||
REGISTER_OP_GPU_KERNEL(reduce_max_grad,
|
||||
ops::ReduceGradKernel<paddle::platform::GPUPlace, float,
|
||||
ops::MaxOrMinGradFunctor>);
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
reduce_min,
|
||||
ops::ReduceKernel<paddle::platform::GPUPlace, float, ops::MinFunctor>);
|
||||
REGISTER_OP_GPU_KERNEL(reduce_min_grad,
|
||||
ops::ReduceGradKernel<paddle::platform::GPUPlace, float,
|
||||
ops::MaxOrMinGradFunctor>);
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,92 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from gradient_checker import GradientChecker, create_op
|
||||
from op_test_util import OpTestMeta
|
||||
from paddle.v2.framework.op import Operator
|
||||
|
||||
|
||||
class TestSumOp(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "reduce_sum"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||
self.attrs = {'dim': -2}
|
||||
out = self.inputs['X'].sum(axis=self.attrs['dim'])
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
|
||||
class TestSumGradOp(GradientChecker):
|
||||
def test_normal(self):
|
||||
op = Operator("reduce_sum", X="X", Out="Out", dim=-2)
|
||||
# use small size to decrease the error of numerical calculation
|
||||
inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||
self.check_grad(op, inputs, set(["X"]), "Out")
|
||||
|
||||
def test_1d_tensor(self):
|
||||
op = Operator("reduce_sum", X="X", Out="Out", dim=0)
|
||||
# use small size to decrease the error of numerical calculation
|
||||
inputs = {'X': np.random.random(10).astype("float32")}
|
||||
self.check_grad(op, inputs, set(["X"]), "Out")
|
||||
|
||||
|
||||
class TestKeepdimSumOp(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "reduce_sum"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||
self.attrs = {'dim': -2}
|
||||
out = self.inputs['X'].sum(axis=self.attrs['dim'], keepdims=True)
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
|
||||
class TestMeanOp(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "reduce_mean"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||
self.attrs = {'dim': -1}
|
||||
out = self.inputs['X'].mean(axis=self.attrs['dim'])
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
|
||||
class TestMeanGradOp(GradientChecker):
|
||||
def test_normal(self):
|
||||
op = Operator("reduce_mean", X="X", Out="Out", dim=-2)
|
||||
# use small size to decrease the error of numerical calculation
|
||||
inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||
self.check_grad(op, inputs, set(["X"]), "Out")
|
||||
|
||||
def test_1d_tensor(self):
|
||||
op = Operator("reduce_mean", X="X", Out="Out", dim=0)
|
||||
# use small size to decrease the error of numerical calculation
|
||||
inputs = {'X': np.random.random(10).astype("float32")}
|
||||
self.check_grad(op, inputs, set(["X"]), "Out")
|
||||
|
||||
|
||||
class TestMaxOp(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "reduce_max"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||
self.attrs = {'dim': -1}
|
||||
out = self.inputs['X'].max(axis=self.attrs['dim'])
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
|
||||
class TestMinOp(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "reduce_max"
|
||||
self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")}
|
||||
self.attrs = {'dim': -2}
|
||||
out = self.inputs['X'].min(axis=self.attrs['dim'])
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue