|
|
|
@ -59,14 +59,13 @@ static std::vector<int64_t> ToAbsoluteSection(
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static std::vector<std::vector<int64_t>> SplitIds(
|
|
|
|
|
const std::string& id_name, const std::vector<int>& height_section,
|
|
|
|
|
framework::Scope* scope) {
|
|
|
|
|
auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
|
|
|
|
|
auto* id_data = id_tensor.data<int64_t>();
|
|
|
|
|
const std::vector<int64_t>& ids_vector,
|
|
|
|
|
const std::vector<int>& height_section, framework::Scope* scope) {
|
|
|
|
|
std::set<int64_t> all_ids;
|
|
|
|
|
for (size_t i = 0; i < id_tensor.numel(); ++i) {
|
|
|
|
|
all_ids.insert(id_data[i]);
|
|
|
|
|
for (auto id : ids_vector) {
|
|
|
|
|
all_ids.insert(id);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto abs_sections = ToAbsoluteSection(height_section);
|
|
|
|
|
std::vector<std::vector<int64_t>> splited_ids;
|
|
|
|
|
splited_ids.resize(height_section.size() + 1);
|
|
|
|
@ -78,7 +77,7 @@ static std::vector<std::vector<int64_t>> SplitIds(
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void SplitIdsIntoMultipleVarsBySection(
|
|
|
|
|
const std::string& id_name, const std::vector<std::string>& in_var_names,
|
|
|
|
|
const std::vector<std::string>& in_var_names,
|
|
|
|
|
const std::vector<int>& height_section,
|
|
|
|
|
const std::vector<std::vector<int64_t>>& splited_ids,
|
|
|
|
|
framework::Scope* scope) {
|
|
|
|
@ -99,8 +98,8 @@ static void SplitIdsIntoMultipleVarsBySection(
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void MergeMultipleVarsIntoOneBySection(
|
|
|
|
|
const std::string& id_name, const std::string& out_name,
|
|
|
|
|
const std::vector<std::string>& out_var_names,
|
|
|
|
|
const std::string& id_name, const std::vector<int64_t>& ids_vector,
|
|
|
|
|
const std::string& out_name, const std::vector<std::string>& out_var_names,
|
|
|
|
|
const std::vector<int>& height_section,
|
|
|
|
|
const std::vector<std::vector<int64_t>>& splited_ids,
|
|
|
|
|
const framework::ExecutionContext& context, framework::Scope* scope) {
|
|
|
|
@ -109,16 +108,20 @@ static void MergeMultipleVarsIntoOneBySection(
|
|
|
|
|
auto cpu_place = platform::CPUPlace();
|
|
|
|
|
|
|
|
|
|
auto abs_sections = ToAbsoluteSection(height_section);
|
|
|
|
|
auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
|
|
|
|
|
auto* id_data = id_tensor.data<int64_t>();
|
|
|
|
|
std::unordered_map<int64_t, std::vector<size_t>> id_to_offset;
|
|
|
|
|
for (size_t i = 0; i < id_tensor.numel(); ++i) {
|
|
|
|
|
id_to_offset[id_data[i]].push_back(i);
|
|
|
|
|
for (size_t i = 0; i < ids_vector.size(); ++i) {
|
|
|
|
|
id_to_offset[ids_vector[i]].push_back(i);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
|
|
|
|
|
auto* out_tensor =
|
|
|
|
|
scope->FindVar(out_name)->GetMutable<framework::LoDTensor>();
|
|
|
|
|
auto* out_tensor_data = out_tensor->mutable_data<float>(context.GetPlace());
|
|
|
|
|
auto* out_tensor_data = out_tensor->mutable_data<float>(id_tensor.place());
|
|
|
|
|
|
|
|
|
|
bool is_on_cpu_place = true;
|
|
|
|
|
if (!platform::is_cpu_place(id_tensor.place())) {
|
|
|
|
|
is_on_cpu_place = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (size_t section_idx = 0; section_idx < out_var_names.size();
|
|
|
|
|
++section_idx) {
|
|
|
|
@ -140,9 +143,20 @@ static void MergeMultipleVarsIntoOneBySection(
|
|
|
|
|
auto& offsets = id_to_offset[origin_id];
|
|
|
|
|
for (auto& offset : offsets) {
|
|
|
|
|
// should support GPU tensor
|
|
|
|
|
memory::Copy(cpu_place, out_tensor_data + offset * row_numel,
|
|
|
|
|
cpu_place, out_var_data + i * row_numel,
|
|
|
|
|
sizeof(float) * row_numel);
|
|
|
|
|
if (is_on_cpu_place) {
|
|
|
|
|
memory::Copy(cpu_place, out_tensor_data + offset * row_numel,
|
|
|
|
|
cpu_place, out_var_data + i * row_numel,
|
|
|
|
|
sizeof(float) * row_numel);
|
|
|
|
|
} else {
|
|
|
|
|
#ifndef PADDLE_WITH_CUDA
|
|
|
|
|
PADDLE_THROW("paddle is not compiled with CUDA!");
|
|
|
|
|
#else
|
|
|
|
|
memory::Copy(boost::get<platform::CUDAPlace>(id_tensor.place()),
|
|
|
|
|
out_tensor_data + offset * row_numel, cpu_place,
|
|
|
|
|
out_var_data + i * row_numel,
|
|
|
|
|
sizeof(float) * row_numel);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
@ -159,7 +173,7 @@ void prefetch(const std::string& id_name, const std::string& out_name,
|
|
|
|
|
auto& local_scope = context.scope().NewScope();
|
|
|
|
|
|
|
|
|
|
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
|
|
|
|
|
auto& ctx = *pool.Get(context.GetPlace());
|
|
|
|
|
auto& cpu_ctx = *pool.Get(platform::CPUPlace());
|
|
|
|
|
|
|
|
|
|
distributed::RPCClient* rpc_client =
|
|
|
|
|
distributed::RPCClient::GetInstance<RPCCLIENT_T>(
|
|
|
|
@ -172,9 +186,34 @@ void prefetch(const std::string& id_name, const std::string& out_name,
|
|
|
|
|
out_var_names.push_back(out_name + "@" + epmap[i]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto splited_ids = SplitIds(id_name, height_sections, &local_scope);
|
|
|
|
|
SplitIdsIntoMultipleVarsBySection(id_name, in_var_names, height_sections,
|
|
|
|
|
splited_ids, &local_scope);
|
|
|
|
|
auto& id_tensor = local_scope.FindVar(id_name)->Get<framework::LoDTensor>();
|
|
|
|
|
std::vector<int64_t> ids_vector;
|
|
|
|
|
if (platform::is_cpu_place(id_tensor.place())) {
|
|
|
|
|
auto* id_data = id_tensor.data<int64_t>();
|
|
|
|
|
for (size_t i = 0; i < id_tensor.numel(); ++i) {
|
|
|
|
|
ids_vector.push_back(id_data[i]);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
#ifndef PADDLE_WITH_CUDA
|
|
|
|
|
PADDLE_THROW("paddle is not compiled with CUDA!");
|
|
|
|
|
#else
|
|
|
|
|
auto cpu_place = platform::CPUPlace();
|
|
|
|
|
framework::Tensor cpu_tensor;
|
|
|
|
|
auto* cpu_tensor_data =
|
|
|
|
|
cpu_tensor.mutable_data<int64_t>(id_tensor.dims(), cpu_place);
|
|
|
|
|
memory::Copy(cpu_place, cpu_tensor_data,
|
|
|
|
|
boost::get<platform::CUDAPlace>(id_tensor.place()),
|
|
|
|
|
id_tensor.data<int64_t>(),
|
|
|
|
|
sizeof(int64_t) * id_tensor.numel());
|
|
|
|
|
for (size_t i = 0; i < id_tensor.numel(); ++i) {
|
|
|
|
|
ids_vector.push_back(cpu_tensor_data[i]);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto splited_ids = SplitIds(ids_vector, height_sections, &local_scope);
|
|
|
|
|
SplitIdsIntoMultipleVarsBySection(in_var_names, height_sections, splited_ids,
|
|
|
|
|
&local_scope);
|
|
|
|
|
|
|
|
|
|
// create output var in local scope
|
|
|
|
|
for (auto& name : out_var_names) {
|
|
|
|
@ -187,7 +226,7 @@ void prefetch(const std::string& id_name, const std::string& out_name,
|
|
|
|
|
VLOG(3) << "sending " << in_var_names[i] << " to " << epmap[i]
|
|
|
|
|
<< " to get " << out_var_names[i] << " back";
|
|
|
|
|
rets.push_back(rpc_client->AsyncPrefetchVar(
|
|
|
|
|
epmap[i], ctx, local_scope, in_var_names[i], out_var_names[i],
|
|
|
|
|
epmap[i], cpu_ctx, local_scope, in_var_names[i], out_var_names[i],
|
|
|
|
|
table_names[i]));
|
|
|
|
|
} else {
|
|
|
|
|
VLOG(3) << "don't send no-initialied variable: " << out_var_names[i];
|
|
|
|
@ -198,9 +237,9 @@ void prefetch(const std::string& id_name, const std::string& out_name,
|
|
|
|
|
PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MergeMultipleVarsIntoOneBySection(id_name, out_name, out_var_names,
|
|
|
|
|
height_sections, splited_ids, context,
|
|
|
|
|
&local_scope);
|
|
|
|
|
MergeMultipleVarsIntoOneBySection(id_name, ids_vector, out_name,
|
|
|
|
|
out_var_names, height_sections, splited_ids,
|
|
|
|
|
context, &local_scope);
|
|
|
|
|
|
|
|
|
|
context.scope().DeleteScope(&local_scope);
|
|
|
|
|
}
|
|
|
|
|