fix quick start for fluid #9660
parent
e0babe7c3e
commit
3a3ff62e20
@ -1 +0,0 @@
|
||||
../../v2/getstarted/quickstart_cn.rst
|
@ -1 +0,0 @@
|
||||
../../v2/getstarted/quickstart_en.rst
|
@ -0,0 +1,120 @@
|
||||
Quick Start
|
||||
============
|
||||
|
||||
Quick Install
|
||||
-------------
|
||||
|
||||
You can use pip to install PaddlePaddle with a single command, supports
|
||||
CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed.
|
||||
Simply run the following command to install, the version is cpu_avx_openblas:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install paddlepaddle
|
||||
|
||||
If you need to install GPU version (cuda7.5_cudnn5_avx_openblas), run:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install paddlepaddle-gpu
|
||||
|
||||
For more details about installation and build: :ref:`install_steps` .
|
||||
|
||||
Quick Use
|
||||
---------
|
||||
|
||||
Create a new file called housing.py, and paste this Python
|
||||
code:
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
import sys
|
||||
|
||||
import math
|
||||
import numpy
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
import paddle
|
||||
|
||||
def train(save_dirname):
|
||||
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
||||
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
||||
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
||||
|
||||
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
|
||||
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
||||
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
BATCH_SIZE = 20
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.reader.shuffle(paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE)
|
||||
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
main_program = fluid.default_main_program()
|
||||
|
||||
PASS_NUM = 100
|
||||
for pass_id in range(PASS_NUM):
|
||||
for data in train_reader():
|
||||
avg_loss_value, = exe.run(main_program,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=[avg_cost])
|
||||
if avg_loss_value[0] < 10.0:
|
||||
if save_dirname is not None:
|
||||
fluid.io.save_inference_model(save_dirname, ['x'],
|
||||
[y_predict], exe)
|
||||
return
|
||||
if math.isnan(float(avg_loss_value)):
|
||||
sys.exit("got NaN loss, training failed.")
|
||||
raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
|
||||
avg_loss_value[0]))
|
||||
|
||||
def infer(save_dirname):
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
probs = []
|
||||
|
||||
inference_scope = fluid.core.Scope()
|
||||
with fluid.scope_guard(inference_scope):
|
||||
# Use fluid.io.load_inference_model to obtain the inference program desc,
|
||||
# the feed_target_names (the names of variables that will be feeded
|
||||
# data using feed operators), and the fetch_targets (variables that
|
||||
# we want to obtain data from using fetch operators).
|
||||
[inference_program, feed_target_names,
|
||||
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
|
||||
|
||||
# The input's dimension should be 2-D and the second dim is 13
|
||||
# The input data should be >= 0
|
||||
batch_size = 10
|
||||
tensor_x = numpy.random.uniform(0, 10,
|
||||
[batch_size, 13]).astype("float32")
|
||||
assert feed_target_names[0] == 'x'
|
||||
results = exe.run(inference_program,
|
||||
feed={feed_target_names[0]: tensor_x},
|
||||
fetch_list=fetch_targets)
|
||||
probs.append(results)
|
||||
|
||||
for i in xrange(len(probs)):
|
||||
print(probs[i][0] * 1000)
|
||||
print('Predicted price: ${0}'.format(probs[i][0] * 1000))
|
||||
|
||||
def main():
|
||||
# Directory for saving the trained model
|
||||
save_dirname = "fit_a_line.inference.model"
|
||||
|
||||
train(save_dirname)
|
||||
infer(save_dirname)
|
||||
|
||||
if __name__=="__main__":
|
||||
main()
|
||||
Run :code:`python housing.py` and voila! It should print out a list of predictions
|
||||
for the test housing data.
|
Loading…
Reference in new issue