|
|
|
@ -62,11 +62,7 @@ class TestApiWhileLoop(unittest.TestCase):
|
|
|
|
|
with program_guard(main_program, startup_program):
|
|
|
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
|
|
|
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
|
|
|
|
|
mem = layers.data(
|
|
|
|
|
name='mem',
|
|
|
|
|
shape=[10],
|
|
|
|
|
dtype='float32',
|
|
|
|
|
append_batch_size=False)
|
|
|
|
|
mem = fluid.data(name='mem', shape=[10], dtype='float32')
|
|
|
|
|
one = layers.fill_constant(shape=[10], dtype='float32', value=1)
|
|
|
|
|
out = layers.while_loop(cond, body, [i, mem])
|
|
|
|
|
|
|
|
|
@ -111,16 +107,8 @@ class TestApiWhileLoop_Nested(unittest.TestCase):
|
|
|
|
|
with program_guard(main_program, startup_program):
|
|
|
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
|
|
|
j = layers.zeros(shape=[1], dtype='int64')
|
|
|
|
|
init = layers.data(
|
|
|
|
|
name='init',
|
|
|
|
|
shape=[3, 3],
|
|
|
|
|
dtype='float32',
|
|
|
|
|
append_batch_size=False)
|
|
|
|
|
sums = layers.data(
|
|
|
|
|
name='sums',
|
|
|
|
|
shape=[3, 3],
|
|
|
|
|
dtype='float32',
|
|
|
|
|
append_batch_size=False)
|
|
|
|
|
init = fluid.data(name='init', shape=[3, 3], dtype='float32')
|
|
|
|
|
sums = fluid.data(name='sums', shape=[3, 3], dtype='float32')
|
|
|
|
|
loop_len1 = layers.fill_constant(shape=[1], dtype='int64', value=2)
|
|
|
|
|
loop_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
|
|
|
|
|
ones = layers.fill_constant(shape=[3, 3], dtype='float32', value=1)
|
|
|
|
@ -159,13 +147,11 @@ class TestApiWhileLoop_Backward(unittest.TestCase):
|
|
|
|
|
main_program = Program()
|
|
|
|
|
startup_program = Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
i = layers.data(
|
|
|
|
|
name='i', shape=[1], dtype='float32', append_batch_size=False)
|
|
|
|
|
i = fluid.data(name='i', shape=[1], dtype='float32')
|
|
|
|
|
i.stop_gradient = False
|
|
|
|
|
eleven = layers.fill_constant(shape=[1], dtype='float32', value=11)
|
|
|
|
|
one = layers.fill_constant(shape=[1], dtype='float32', value=1)
|
|
|
|
|
x = layers.data(
|
|
|
|
|
name='x', shape=[1], dtype='float32', append_batch_size=False)
|
|
|
|
|
x = fluid.data(name='x', shape=[1], dtype='float32')
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
|
|
|
|
|
|
out = layers.while_loop(cond, body, [i, x])
|
|
|
|
@ -189,63 +175,84 @@ class TestApiWhileLoop_Backward(unittest.TestCase):
|
|
|
|
|
self.assertTrue(np.allclose(np.asarray(res[1]), i_grad))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestApiWhileLoop_NestedWithBackward(unittest.TestCase):
|
|
|
|
|
def test_nested_net_with_backward(self):
|
|
|
|
|
def external_cond(i, x, y):
|
|
|
|
|
return layers.less_than(i, ten)
|
|
|
|
|
|
|
|
|
|
def external_body(i, x, y):
|
|
|
|
|
def internal_cond(i, x, y):
|
|
|
|
|
return layers.less_than(i, five)
|
|
|
|
|
|
|
|
|
|
def internal_body(i, x, y):
|
|
|
|
|
x = layers.elementwise_add(x=i, y=i)
|
|
|
|
|
i = layers.increment(i)
|
|
|
|
|
return [i, x, y]
|
|
|
|
|
|
|
|
|
|
temp = layers.while_loop(internal_cond, internal_body, [i, x, y])
|
|
|
|
|
y = layers.elementwise_add(x=temp[1], y=i)
|
|
|
|
|
i = layers.increment(i)
|
|
|
|
|
return [i, x, y]
|
|
|
|
|
class TestApiWhileLoop_NestedWithBackwardAndLoDTensorArray(unittest.TestCase):
|
|
|
|
|
def test_nested_net_with_backward_and_lodtensor(self):
|
|
|
|
|
def external_cond(i, j, x, mem_array):
|
|
|
|
|
return layers.less_than(i, array_len)
|
|
|
|
|
|
|
|
|
|
def external_body(i, j, x, mem_array):
|
|
|
|
|
def internal_cond(j, x, mem_array):
|
|
|
|
|
return layers.less_than(j, array_len2)
|
|
|
|
|
|
|
|
|
|
def internal_body(j, x, mem_array):
|
|
|
|
|
inner_data = layers.array_read(array=data_array, i=j)
|
|
|
|
|
inner_prev = layers.array_read(array=mem_array, i=j)
|
|
|
|
|
inner_sum_0 = layers.elementwise_add(x=inner_data, y=inner_prev)
|
|
|
|
|
inner_sum_1 = layers.elementwise_add(x=x, y=inner_sum_0)
|
|
|
|
|
j = layers.increment(x=j, in_place=True)
|
|
|
|
|
layers.array_write(inner_sum_1, i=j, array=mem_array)
|
|
|
|
|
return [j, x, mem_array]
|
|
|
|
|
|
|
|
|
|
outer_data = layers.array_read(array=data_array, i=i)
|
|
|
|
|
outer_prev = layers.array_read(array=mem_array, i=i)
|
|
|
|
|
outer_sum_0 = layers.elementwise_add(x=outer_data, y=outer_prev)
|
|
|
|
|
outer_sum_1 = layers.elementwise_add(x=x, y=outer_sum_0)
|
|
|
|
|
i = layers.increment(x=i, in_place=True)
|
|
|
|
|
layers.array_write(outer_sum_1, i=i, array=mem_array)
|
|
|
|
|
j, x, mem_array = layers.while_loop(internal_cond, internal_body,
|
|
|
|
|
[j, x, mem_array])
|
|
|
|
|
return [i, j, x, mem_array]
|
|
|
|
|
|
|
|
|
|
main_program = Program()
|
|
|
|
|
startup_program = Program()
|
|
|
|
|
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
i = layers.data(
|
|
|
|
|
name='i', shape=[1], dtype='float32', append_batch_size=False)
|
|
|
|
|
i.stop_gradient = False
|
|
|
|
|
ten = layers.fill_constant(shape=[1], dtype='float32', value=10)
|
|
|
|
|
five = layers.fill_constant(shape=[1], dtype='float32', value=5)
|
|
|
|
|
x = layers.data(
|
|
|
|
|
name='x', shape=[1], dtype='float32', append_batch_size=False)
|
|
|
|
|
d0 = fluid.data(name='d0', shape=[10], dtype='float32')
|
|
|
|
|
d1 = fluid.data(name='d1', shape=[10], dtype='float32')
|
|
|
|
|
d2 = fluid.data(name='d2', shape=[10], dtype='float32')
|
|
|
|
|
x = fluid.data(name='x', shape=[10], dtype='float32')
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
|
y = layers.data(
|
|
|
|
|
name='y', shape=[1], dtype='float32', append_batch_size=False)
|
|
|
|
|
y.stop_gradient = False
|
|
|
|
|
out = layers.while_loop(external_cond, external_body, [i, x, y])
|
|
|
|
|
|
|
|
|
|
mean = layers.mean(out[2])
|
|
|
|
|
append_backward(mean)
|
|
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
|
|
|
) else fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
|
|
|
i.stop_gradient = True
|
|
|
|
|
init = layers.zeros(shape=[10], dtype='float32')
|
|
|
|
|
mem_array = layers.array_write(x=init, i=i)
|
|
|
|
|
data_array = layers.array_write(x=d0, i=i)
|
|
|
|
|
i = layers.increment(i)
|
|
|
|
|
layers.array_write(d1, i, array=data_array)
|
|
|
|
|
i = layers.increment(i)
|
|
|
|
|
layers.array_write(d2, i, array=data_array)
|
|
|
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
|
|
|
i.stop_gradient = True
|
|
|
|
|
array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
|
|
|
j = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
|
|
|
j.stop_gradient = True
|
|
|
|
|
array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
|
|
|
|
|
|
|
|
|
|
data = np.asarray([17]).astype('float32')
|
|
|
|
|
feed_x = np.zeros(1).astype('float32')
|
|
|
|
|
feed_i = np.ones(1).astype('float32')
|
|
|
|
|
feed_y = np.zeros(1).astype('float32')
|
|
|
|
|
i_grad = np.asarray(13).astype('int32')
|
|
|
|
|
out = layers.while_loop(external_cond, external_body,
|
|
|
|
|
[i, j, x, mem_array])
|
|
|
|
|
|
|
|
|
|
res = exe.run(main_program,
|
|
|
|
|
feed={'i': feed_i,
|
|
|
|
|
'x': feed_x,
|
|
|
|
|
'y': feed_y},
|
|
|
|
|
fetch_list=[mean.name, i.grad_name])
|
|
|
|
|
sum_result = layers.array_read(array=mem_array, i=j)
|
|
|
|
|
mean = layers.mean(sum_result)
|
|
|
|
|
append_backward(mean)
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(np.asarray(res[0]), data))
|
|
|
|
|
self.assertTrue(np.allclose(np.asarray(res[1]), i_grad))
|
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
|
|
|
) else fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
|
|
|
|
|
d = []
|
|
|
|
|
for i in range(3):
|
|
|
|
|
d.append(np.random.random(size=[10]).astype('float32'))
|
|
|
|
|
feed_x = np.ones(10).astype('float32')
|
|
|
|
|
data_sum = d[0] + d[1] + d[2] + 3 * feed_x
|
|
|
|
|
x_grad = [0.3] * 10
|
|
|
|
|
res = exe.run(
|
|
|
|
|
main_program,
|
|
|
|
|
feed={'d0': d[0],
|
|
|
|
|
'd1': d[1],
|
|
|
|
|
'd2': d[2],
|
|
|
|
|
'x': feed_x},
|
|
|
|
|
fetch_list=[sum_result.name, x.grad_name])
|
|
|
|
|
self.assertTrue(np.allclose(res[0], data_sum))
|
|
|
|
|
self.assertTrue(np.allclose(res[1], x_grad))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestApiWhileLoopWithSwitchCase(unittest.TestCase):
|
|
|
|
|