commit
3a6f20025a
@ -0,0 +1,91 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <glog/logging.h>
|
||||
#include "unsupported/Eigen/CXX11/Tensor"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
template <class T>
|
||||
struct EigenBlasGemm {
|
||||
typedef Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, int>,
|
||||
Eigen::Aligned>
|
||||
Matrix;
|
||||
|
||||
static void compute(const bool transA,
|
||||
const bool transB,
|
||||
const int M,
|
||||
const int N,
|
||||
const int K,
|
||||
const T alpha,
|
||||
const T* A,
|
||||
const int lda,
|
||||
const T* B,
|
||||
const int ldb,
|
||||
const T beta,
|
||||
T* C,
|
||||
const int ldc) {
|
||||
Eigen::array<int, 2> sizeA;
|
||||
if (transA) {
|
||||
sizeA[0] = K;
|
||||
sizeA[1] = M;
|
||||
CHECK_EQ(M, lda);
|
||||
} else {
|
||||
sizeA[0] = M;
|
||||
sizeA[1] = K;
|
||||
CHECK_EQ(K, lda);
|
||||
}
|
||||
Eigen::array<int, 2> sizeB;
|
||||
if (transB) {
|
||||
sizeB[0] = N;
|
||||
sizeB[1] = K;
|
||||
CHECK_EQ(K, ldb);
|
||||
} else {
|
||||
sizeB[0] = K;
|
||||
sizeB[1] = N;
|
||||
CHECK_EQ(N, ldb);
|
||||
}
|
||||
Eigen::array<int, 2> sizeC;
|
||||
sizeC[0] = M;
|
||||
sizeC[1] = N;
|
||||
CHECK_EQ(N, ldc);
|
||||
|
||||
const Matrix a(const_cast<T*>(A), sizeA);
|
||||
const Matrix b(const_cast<T*>(B), sizeB);
|
||||
Matrix c(C, sizeC);
|
||||
|
||||
typedef typename Eigen::Tensor<T, 2>::DimensionPair DimPair;
|
||||
Eigen::array<DimPair, 1> dims;
|
||||
dims[0] = DimPair(1, 0);
|
||||
dims[0].first = transA ? 0 : 1;
|
||||
dims[0].second = transB ? 1 : 0;
|
||||
|
||||
Eigen::DefaultDevice device;
|
||||
if (alpha == T(1) && beta == T(0)) {
|
||||
c.device(device) = a.contract(b, dims);
|
||||
} else if (alpha == T(1) && beta == T(1)) {
|
||||
c.device(device) += a.contract(b, dims);
|
||||
} else {
|
||||
c.device(device) = alpha * a.contract(b, dims) + beta * c;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#ifdef PADDLE_TYPE_DOUBLE
|
||||
template class EigenBlasGemm<double>;
|
||||
#else
|
||||
template class EigenBlasGemm<float>;
|
||||
#endif
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,90 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "GemmFunctor.h"
|
||||
#include "paddle/math/MathFunctions.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
template <class T>
|
||||
struct BlasGemm<DEVICE_TYPE_CPU, T> {
|
||||
static void compute(const bool transA,
|
||||
const bool transB,
|
||||
const int M,
|
||||
const int N,
|
||||
const int K,
|
||||
const T alpha,
|
||||
const T* A,
|
||||
const int lda,
|
||||
const T* B,
|
||||
const int ldb,
|
||||
const T beta,
|
||||
T* C,
|
||||
const int ldc) {
|
||||
#ifdef PADDLE_USE_EIGEN_FOR_BLAS
|
||||
EigenBlasGemm<T>::compute(
|
||||
transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);
|
||||
#else
|
||||
gemm<T>(transA == false ? CblasNoTrans : CblasTrans,
|
||||
transB == false ? CblasNoTrans : CblasTrans,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
alpha,
|
||||
A,
|
||||
lda,
|
||||
B,
|
||||
ldb,
|
||||
beta,
|
||||
C,
|
||||
ldc);
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
template <class T>
|
||||
struct BlasGemm<DEVICE_TYPE_GPU, T> {
|
||||
static void compute(const bool transA,
|
||||
const bool transB,
|
||||
const int M,
|
||||
const int N,
|
||||
const int K,
|
||||
const T alpha,
|
||||
const T* A,
|
||||
const int lda,
|
||||
const T* B,
|
||||
const int ldb,
|
||||
const T beta,
|
||||
T* C,
|
||||
const int ldc) {
|
||||
hl_matrix_mul((T*)A,
|
||||
transA == false ? HPPL_OP_N : HPPL_OP_T,
|
||||
(T*)B,
|
||||
transB == false ? HPPL_OP_N : HPPL_OP_T,
|
||||
C,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
alpha,
|
||||
beta,
|
||||
lda,
|
||||
ldb,
|
||||
ldc);
|
||||
}
|
||||
};
|
||||
|
||||
template struct BlasGemm<DEVICE_TYPE_CPU, real>;
|
||||
template struct BlasGemm<DEVICE_TYPE_GPU, real>;
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,107 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Layer.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* A layer applies a linear transformation to each element in each row of
|
||||
* the input matrix. For each element, the layer first re-scale it and then
|
||||
* adds a bias to it.
|
||||
*
|
||||
* \f[
|
||||
* y = wx + b
|
||||
* \f]
|
||||
*
|
||||
* Here, w is the scale and b is the bias. Both w and b are trainable scalars.
|
||||
*
|
||||
*/
|
||||
|
||||
class ScaleShiftLayer : public Layer {
|
||||
protected:
|
||||
std::unique_ptr<Weight> scale_;
|
||||
std::unique_ptr<Weight> offset_;
|
||||
|
||||
public:
|
||||
explicit ScaleShiftLayer(const LayerConfig& config) : Layer(config) {}
|
||||
|
||||
bool init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) override;
|
||||
|
||||
void forward(PassType passType) override;
|
||||
void backward(const UpdateCallback& callback = nullptr) override;
|
||||
};
|
||||
|
||||
REGISTER_LAYER(scale_shift, ScaleShiftLayer);
|
||||
|
||||
bool ScaleShiftLayer::init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) {
|
||||
Layer::init(layerMap, parameterMap);
|
||||
CHECK_EQ(inputLayers_.size(), 1U);
|
||||
scale_.reset(new Weight(1, 1, parameters_[0]));
|
||||
if (biasParameter_.get() != NULL) {
|
||||
offset_ = std::unique_ptr<Weight>(new Weight(1, 1, biasParameter_));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void ScaleShiftLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
|
||||
MatrixPtr inV = getInputValue(0);
|
||||
resetOutput(inV->getHeight(), inV->getWidth());
|
||||
MatrixPtr outV = getOutputValue();
|
||||
real scaleValue = scale_->getW()->getElement(0, 0);
|
||||
outV->mulScalar(*inV, scaleValue);
|
||||
if (offset_) {
|
||||
real offsetValue = offset_->getW()->getElement(0, 0);
|
||||
outV->add(offsetValue);
|
||||
}
|
||||
}
|
||||
|
||||
void ScaleShiftLayer::backward(const UpdateCallback& callback) {
|
||||
MatrixPtr inV = getInputValue(0);
|
||||
MatrixPtr inG = getInputGrad(0);
|
||||
MatrixPtr outV = getOutputValue();
|
||||
MatrixPtr outG = getOutputGrad();
|
||||
|
||||
/* Calculate the parameter gradient for the current layer */
|
||||
if (scale_->getWGrad()) {
|
||||
MatrixPtr rowSumMtx;
|
||||
Matrix::resizeOrCreate(rowSumMtx, outG->getHeight(), 1, false, useGpu_);
|
||||
// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ij} * c_{ij}
|
||||
rowSumMtx->sumOfProducts(
|
||||
/* b= */ *inV, /* c= */ *outG, /* scaleSum= */ 1, /* scaleDest= */ 0.);
|
||||
// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ji}
|
||||
scale_->getWGrad()->sumCols(
|
||||
/* b= */ *rowSumMtx, /* scaleSum= */ 1., /* scaleDest= */ 1.);
|
||||
scale_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
if (offset_ && offset_->getWGrad()) {
|
||||
MatrixPtr rowSumMtx;
|
||||
Matrix::resizeOrCreate(rowSumMtx, outG->getHeight(), 1, false, useGpu_);
|
||||
rowSumMtx->sumRows(*outG, 1., 0.);
|
||||
offset_->getWGrad()->sumCols(*rowSumMtx, 1., 1.);
|
||||
offset_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
|
||||
/* Calculate the input layers error */
|
||||
if (inG) {
|
||||
real scaleValue = scale_->getW()->getElement(0, 0);
|
||||
inG->add(*outG, scaleValue);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue