Using Smart pointer to optimizer memory usage of dyGraph (#17768)
* for debug * test=develop, memory optimize for dygraph using shared_ptr * test=develop, fix travis ci showed error * test=develop, fix bug for recurrent usage of varbase * test=develop, init varbase when it need to be Adddependabot/pip/python/requests-2.20.0
parent
82358bfdc1
commit
3b70f870e2
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,87 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.dygraph.nn import Embedding
|
||||
import paddle.fluid.framework as framework
|
||||
from paddle.fluid.optimizer import SGDOptimizer
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
from test_imperative_base import new_program_scope
|
||||
import numpy as np
|
||||
import six
|
||||
|
||||
|
||||
class RecurrentTest(fluid.Layer):
|
||||
def __init__(self, name_scope):
|
||||
super(RecurrentTest, self).__init__(name_scope)
|
||||
|
||||
def forward(self, in1, in2):
|
||||
out = fluid.layers.mul(in1, in2)
|
||||
sum_out = fluid.layers.reduce_sum(out)
|
||||
return sum_out, out
|
||||
|
||||
|
||||
class TestRecurrentFeed(unittest.TestCase):
|
||||
def test_recurrent_feed(self):
|
||||
|
||||
seed = 90
|
||||
original_np1 = np.arange(1, 5).reshape(2, 2).astype("float32")
|
||||
original_np2 = np.arange(5, 9).reshape(2, 2).astype("float32")
|
||||
with fluid.dygraph.guard():
|
||||
fluid.default_startup_program().random_seed = seed
|
||||
fluid.default_main_program().random_seed = seed
|
||||
original_in1 = to_variable(original_np1)
|
||||
original_in2 = to_variable(original_np2)
|
||||
rt = RecurrentTest("RecurrentTest")
|
||||
|
||||
for i in range(3):
|
||||
sum_out, out = rt(original_in1, original_in2)
|
||||
original_in1 = out
|
||||
sum_out_value = sum_out.numpy()
|
||||
sum_out.backward()
|
||||
rt.clear_gradients()
|
||||
|
||||
with new_program_scope():
|
||||
fluid.default_startup_program().random_seed = seed
|
||||
fluid.default_main_program().random_seed = seed
|
||||
in1 = fluid.layers.data(
|
||||
name="inp1", shape=[2, 2], append_batch_size=False)
|
||||
in2 = fluid.layers.data(
|
||||
name="inp2", shape=[2, 2], append_batch_size=False)
|
||||
rt1 = RecurrentTest("RecurrentTest")
|
||||
static_sum_out, static_out = rt1(in1, in2)
|
||||
fluid.backward.append_backward(static_sum_out)
|
||||
exe = fluid.Executor(fluid.CPUPlace(
|
||||
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
||||
|
||||
fetch_list = [static_sum_out, static_out]
|
||||
for i in range(3):
|
||||
out = exe.run(
|
||||
fluid.default_main_program(),
|
||||
feed={"inp1": original_np1,
|
||||
"inp2": original_np2},
|
||||
fetch_list=fetch_list)
|
||||
static_out_value = out[1]
|
||||
static_sum_out = out[0]
|
||||
original_np1 = static_out_value
|
||||
|
||||
self.assertTrue(np.array_equal(static_sum_out, sum_out_value))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue