|
|
|
@ -689,3 +689,71 @@ def load(out, file_path, load_as_fp16=None):
|
|
|
|
|
if load_as_fp16 is not None:
|
|
|
|
|
attrs['load_as_fp16'] = load_as_fp16
|
|
|
|
|
helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_test_program(filelist, test_program=None, startup_program=None):
|
|
|
|
|
"""
|
|
|
|
|
Transpile current program to read test dataset if the program
|
|
|
|
|
is using reader ops like "open_files_op".
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
filelist (list): list of test file paths.
|
|
|
|
|
test_program (Program|None): program to run test/evaluation.
|
|
|
|
|
default use fluid.default_main_program()
|
|
|
|
|
startup_program (Program|None): startup program to change,
|
|
|
|
|
default use fluid.default_startup_program()
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Program: program for test
|
|
|
|
|
"""
|
|
|
|
|
if test_program == None:
|
|
|
|
|
program = default_main_program()
|
|
|
|
|
if startup_program == None:
|
|
|
|
|
startup_program = default_startup_program()
|
|
|
|
|
|
|
|
|
|
# 1. find out the orignal reader var name
|
|
|
|
|
open_files_var = None
|
|
|
|
|
train_open_files_op = None
|
|
|
|
|
for op in startup_program.global_block().ops:
|
|
|
|
|
if op.type == "open_files":
|
|
|
|
|
train_open_files_op = op
|
|
|
|
|
open_files_var_name = op.output("Out")[0]
|
|
|
|
|
open_files_var = startup_program.global_block().vars[
|
|
|
|
|
open_files_var_name]
|
|
|
|
|
|
|
|
|
|
# 2. add operator to startup to read open and read test data files
|
|
|
|
|
test_startup_var = startup_program.global_block().create_var(
|
|
|
|
|
name=open_files_var.name + "_test")
|
|
|
|
|
|
|
|
|
|
print("creating openfiles for test reader: ", train_open_files_op.attrs)
|
|
|
|
|
startup_program.global_block().append_op(
|
|
|
|
|
type='open_files',
|
|
|
|
|
outputs={'Out': [test_startup_var]},
|
|
|
|
|
attrs={
|
|
|
|
|
'shape_concat': train_open_files_op.attrs["shape_concat"],
|
|
|
|
|
'lod_levels': train_open_files_op.attrs["lod_levels"],
|
|
|
|
|
'ranks': train_open_files_op.attrs["ranks"],
|
|
|
|
|
'file_names': filelist,
|
|
|
|
|
'thread_num': train_open_files_op.attrs["thread_num"],
|
|
|
|
|
'buffer_size': train_open_files_op.attrs["buffer_size"]
|
|
|
|
|
})
|
|
|
|
|
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in ["float32", "int64"]]
|
|
|
|
|
test_startup_var.desc.set_dtypes(dtypes)
|
|
|
|
|
test_startup_var.persistable = True
|
|
|
|
|
_copy_reader_var_(default_main_program().global_block(), test_startup_var)
|
|
|
|
|
|
|
|
|
|
# 3. rename reader vars in inference program to different name
|
|
|
|
|
# to avoid read from train data.
|
|
|
|
|
program.global_block().rename_var(open_files_var.name,
|
|
|
|
|
test_startup_var.name)
|
|
|
|
|
for op in program.global_block().ops:
|
|
|
|
|
if "Out" in op.output_names:
|
|
|
|
|
op_out_var_name = op.output("Out")[0]
|
|
|
|
|
op_out_var = program.global_block().vars[op_out_var_name]
|
|
|
|
|
if op_out_var.type == core.VarDesc.VarType.READER:
|
|
|
|
|
newname = op_out_var.name + "_test"
|
|
|
|
|
program.global_block().rename_var(op_out_var.name, newname)
|
|
|
|
|
|
|
|
|
|
program.sync_with_cpp()
|
|
|
|
|
|
|
|
|
|
return program
|
|
|
|
|