test=develop, polish code and merge conflict

revert-15470-feature/imperative
JiabinYang 6 years ago
parent 1bf2facecb
commit 3be8ffad2f

@ -1073,7 +1073,8 @@ Scope* OperatorWithKernel::PrepareData(
proto::VarType::Type OperatorWithKernel::IndicateDataType(
const ExecutionContext& ctx) const {
int data_type = -1;
proto::VarType::Type defaut_data_type = static_cast<proto::VarType::Type>(-1);
proto::VarType::Type data_type = defaut_data_type;
for (auto& input : this->inputs_) {
const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
for (size_t i = 0; i < vars.size(); ++i) {
@ -1090,18 +1091,19 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
if (t != nullptr) {
PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
input.first, i);
int tmp = static_cast<int>(t->type());
proto::VarType::Type tmp = t->type();
PADDLE_ENFORCE(
tmp == data_type || data_type == -1,
tmp == data_type || data_type == defaut_data_type,
"DataType of Paddle Op %s must be the same. Get (%d) != (%d)",
Type(), data_type, tmp);
Type(), DataTypeToString(data_type), DataTypeToString(tmp));
data_type = tmp;
}
}
}
}
PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
return static_cast<proto::VarType::Type>(data_type);
PADDLE_ENFORCE(data_type != defaut_data_type,
"DataType should be indicated by input");
return data_type;
}
OpKernelType OperatorWithKernel::GetExpectedKernelType(

@ -25,7 +25,8 @@ inline const T* Tensor::data() const {
check_memory_size();
bool valid =
std::is_same<T, void>::value || type_ == DataTypeTrait<T>::DataType;
PADDLE_ENFORCE(valid, "Tensor holds the wrong type, it holds %d", type_);
PADDLE_ENFORCE(valid, "Tensor holds the wrong type, it holds %d",
DataTypeToString(type_));
return reinterpret_cast<const T*>(
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);

@ -1,48 +0,0 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from paddle.fluid.imperative.nn import EMBEDDING
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
import numpy as np
class Split_test(fluid.imperative.Layer):
def __init__(self):
super(Split_test, self).__init__()
def _build_once(self, input):
pass
def forward(self, input):
out = fluid.layers.split(input, num_or_sections=4, dim=-1)
return out
class TestImperativePtbRnn(unittest.TestCase):
def test_spilt(self):
with fluid.imperative.guard():
inp = to_variable(np.arange(160).reshape(4, 40).astype('float32'))
st = Split_test()
out = st(inp)
print(out)
if __name__ == '__main__':
unittest.main()
Loading…
Cancel
Save