parent
cccde65b1c
commit
3bf1ae9b59
@ -0,0 +1,143 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/spectral_norm_op.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class SpectralNormOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Weight"),
|
||||
"Input(Weight) of SpectralNormOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("U"),
|
||||
"Input(U) of SpectralNormOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("V"),
|
||||
"Input(V) of SpectralNormOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of SpectralNormOp should not be null.");
|
||||
|
||||
auto dim_weight = ctx->GetInputDim("Weight");
|
||||
auto weight_dimsize = dim_weight.size();
|
||||
PADDLE_ENFORCE(weight_dimsize >= 2 && weight_dimsize <= 5,
|
||||
"The size of dims of Input(Weights) can only be 2, 3,"
|
||||
"4, 5 for fc, conv1d, conv2d, conv3d layers.");
|
||||
|
||||
int dim = ctx->Attrs().Get<int>("dim");
|
||||
int power_iters = ctx->Attrs().Get<int>("power_iters");
|
||||
PADDLE_ENFORCE(dim >= 0 && dim < weight_dimsize - 1,
|
||||
"Attr(dim) should be larger equal 0 and less then the"
|
||||
"size of dims of Input(Weights) - 1,");
|
||||
PADDLE_ENFORCE(power_iters >= 0,
|
||||
"Attr(power_iters) should be larger equal then 0");
|
||||
|
||||
ctx->SetOutputDim("Out", dim_weight);
|
||||
ctx->ShareLoD("Weight", /*->*/ "Out");
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
|
||||
ctx.GetPlace());
|
||||
}
|
||||
};
|
||||
|
||||
class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("Weight",
|
||||
"The input weight tensor of spectral_norm operator, "
|
||||
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the"
|
||||
"weights of fc, conv1d, conv2d, conv3d layer.");
|
||||
AddInput("U",
|
||||
"The weight_u tensor of spectral_norm operator, "
|
||||
"This can be a 1-D tensor in shape [H, 1],"
|
||||
"H is the 1st dimentions of Weight after reshape"
|
||||
"corresponding by Attr(dim).");
|
||||
AddInput("V",
|
||||
"The weight_u tensor of spectral_norm operator, "
|
||||
"This can be a 1-D tensor in shape [W, 1],"
|
||||
"W is the 2nd dimentions of Weight after reshape"
|
||||
"corresponding by Attr(dim).");
|
||||
AddOutput("Out",
|
||||
"The output weight tensor of spectral_norm operator, "
|
||||
"This tensor is in same shape with Input(Weight).");
|
||||
|
||||
AddAttr<int>("dim",
|
||||
"dimension corresponding to number of outputs,"
|
||||
"default 0 for fc layer, and 1 for conv1d, conv2d, conv3d"
|
||||
"layers")
|
||||
.SetDefault(0);
|
||||
AddAttr<int>("power_iters",
|
||||
"number of power iterations to calculate"
|
||||
"spectral norm, default is 1.")
|
||||
.SetDefault(1);
|
||||
AddAttr<float>("eps",
|
||||
"epsilob for numerical stability in"
|
||||
"calculating norms")
|
||||
.SetDefault(1e-12);
|
||||
|
||||
AddComment(R"DOC(
|
||||
This operator samples input X to given output shape by using specified
|
||||
|
||||
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SpectralNormOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Weight"), "Input(Weight) should not be null");
|
||||
PADDLE_ENFORCE(ctx->HasInput("U"), "Input(U) should not be null");
|
||||
PADDLE_ENFORCE(ctx->HasInput("V"), "Input(V) should not be null");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null");
|
||||
auto dim_x = ctx->GetInputDim("Weight");
|
||||
if (ctx->HasOutput(framework::GradVarName("Weight"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("Weight"), dim_x);
|
||||
}
|
||||
}
|
||||
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
|
||||
ctx.GetPlace());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(spectral_norm, ops::SpectralNormOp, ops::SpectralNormOpMaker,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(spectral_norm_grad, ops::SpectralNormOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
spectral_norm,
|
||||
ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, double>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
spectral_norm_grad,
|
||||
ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, double>);
|
@ -0,0 +1,128 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/fluid/framework/eigen.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/operators/math/blas.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
using Array1 = Eigen::DSizes<int64_t, 1>;
|
||||
using Array2 = Eigen::DSizes<int64_t, 2>;
|
||||
using IndexPair = Eigen::IndexPair<int>;
|
||||
|
||||
static inline void ResizeWeight(Tensor* weight_mat, const int dim) {
|
||||
auto weight_dims = weight_mat->dims();
|
||||
int h = 1;
|
||||
int w = 1;
|
||||
for (int i = 0; i < weight_dims.size(); i++) {
|
||||
if (i <= dim) {
|
||||
h *= weight_dims[i];
|
||||
} else {
|
||||
w *= weight_dims[i];
|
||||
}
|
||||
}
|
||||
*weight_mat = weight_mat->Resize({h, w});
|
||||
}
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
static inline void CalcMatrixSigmaAndNormWeight(
|
||||
Tensor* sigma, Tensor* u, Tensor* v, Tensor* weight, const int power_iters,
|
||||
const float eps, const framework::ExecutionContext& ctx) {
|
||||
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
|
||||
auto sigma_t = EigenTensor<T, 2>::From(*sigma);
|
||||
auto weight_t = EigenTensor<T, 2>::From(*weight);
|
||||
auto u_t = EigenTensor<T, 1>::From(*u);
|
||||
auto v_t = EigenTensor<T, 1>::From(*v);
|
||||
|
||||
const int h = weight->dims()[0];
|
||||
const int w = weight->dims()[1];
|
||||
|
||||
Eigen::array<int, 2> perm = {1, 0};
|
||||
Eigen::array<IndexPair, 1> product_dims = {IndexPair(1, 0)};
|
||||
auto weight_trans_t = weight_t.shuffle(perm);
|
||||
LOG(ERROR) << "weight: " << weight_t;
|
||||
LOG(ERROR) << "weight_trans: " << weight_trans_t;
|
||||
for (int i = 0; i < power_iters; i++) {
|
||||
v_t.device(place) = weight_trans_t.contract(u_t, product_dims);
|
||||
LOG(ERROR) << "iter v: " << v_t;
|
||||
auto v_t_norm =
|
||||
v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
|
||||
Array1(w));
|
||||
LOG(ERROR) << "iter v_norm: " << v_t_norm;
|
||||
v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps));
|
||||
LOG(ERROR) << "iter norm v: " << v_t;
|
||||
u_t.device(place) = weight_t.contract(v_t, product_dims);
|
||||
LOG(ERROR) << "iter u: " << u_t;
|
||||
auto u_t_norm =
|
||||
u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
|
||||
Array1(h));
|
||||
u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps));
|
||||
LOG(ERROR) << "iter norm u: " << u_t;
|
||||
}
|
||||
LOG(ERROR) << "h" << h << "w" << w;
|
||||
LOG(ERROR) << "u: " << u_t;
|
||||
LOG(ERROR) << "v: " << v_t;
|
||||
LOG(ERROR) << "weight_v: " << weight_t.contract(v_t, product_dims);
|
||||
sigma_t.device(place) = (u_t * weight_t.contract(v_t, product_dims))
|
||||
.sum()
|
||||
.eval()
|
||||
.reshape(Array2(1, 1))
|
||||
.broadcast(Array2(h, w));
|
||||
LOG(ERROR) << "weight: " << weight_t;
|
||||
LOG(ERROR) << "sigma: " << sigma_t;
|
||||
weight_t.device(place) = weight_t / sigma_t;
|
||||
}
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SpectralNormKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto weight = ctx.Input<Tensor>("Weight");
|
||||
auto u = ctx.Input<Tensor>("U");
|
||||
auto v = ctx.Input<Tensor>("V");
|
||||
auto out = ctx.Output<Tensor>("Out");
|
||||
|
||||
int dim = ctx.Attr<int>("dim");
|
||||
int power_iters = ctx.Attr<int>("power_iters");
|
||||
float eps = ctx.Attr<float>("eps");
|
||||
|
||||
Tensor weight_mat;
|
||||
TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
|
||||
ResizeWeight(&weight_mat, dim);
|
||||
|
||||
Tensor sigma;
|
||||
sigma.mutable_data<T>(weight->dims(), ctx.GetPlace());
|
||||
Tensor uu, vv;
|
||||
TensorCopySync(*u, ctx.GetPlace(), &uu);
|
||||
TensorCopySync(*v, ctx.GetPlace(), &vv);
|
||||
CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
|
||||
&sigma, &uu, &vv, &weight_mat, power_iters, eps, ctx);
|
||||
TensorCopySync(weight_mat, ctx.GetPlace(), out);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SpectralNormGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,64 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
from paddle.fluid import core
|
||||
|
||||
|
||||
class TestSpectralNormOp(OpTest):
|
||||
def setUp(self):
|
||||
self.initTestCase()
|
||||
self.op_type = 'spectral_norm'
|
||||
# weight = np.random.random(self.weight_shape).astype('float32')
|
||||
# u = np.random.random(self.u_shape).astype('float32')
|
||||
# v = np.random.random(self.u_shape).astype('float32')
|
||||
weight = np.ones(self.weight_shape).astype('float32')
|
||||
weight[1, :] = 2.
|
||||
u = np.ones(self.u_shape).astype('float32')
|
||||
v = np.ones(self.v_shape).astype('float32')
|
||||
|
||||
self.attrs = {
|
||||
"dim": self.dim,
|
||||
"power_iters": self.power_iters,
|
||||
"eps": self.eps,
|
||||
}
|
||||
|
||||
self.inputs = {
|
||||
"Weight": weight,
|
||||
"U": u,
|
||||
"V": v,
|
||||
}
|
||||
|
||||
output = weight
|
||||
self.outputs = {"Out": weight, }
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def initTestCase(self):
|
||||
self.weight_shape = (2, 3)
|
||||
self.u_shape = (2, )
|
||||
self.v_shape = (3, )
|
||||
self.dim = 0
|
||||
self.power_iters = 1
|
||||
self.eps = 1e-12
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue