parent
8d88c5a87d
commit
3cd10a7c4f
@ -1,123 +0,0 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import contextlib
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import core
|
||||
from paddle.fluid.layers.nn import FC
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def new_program_scope():
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
scope = fluid.core.Scope()
|
||||
with fluid.scope_guard(scope):
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
yield
|
||||
|
||||
|
||||
class MyLayer(fluid.imperative.PyLayer):
|
||||
def __init__(self):
|
||||
super(MyLayer, self).__init__()
|
||||
|
||||
def forward(self, inputs):
|
||||
x = fluid.layers.relu(inputs[0])
|
||||
self._x_for_debug = x
|
||||
return [fluid.layers.elementwise_mul(x, x)]
|
||||
|
||||
|
||||
class MLP(fluid.imperative.PyLayer):
|
||||
def __init__(self):
|
||||
super(MLP, self).__init__()
|
||||
self._fc1 = FC(3,
|
||||
fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.1)))
|
||||
self._fc2 = FC(4,
|
||||
fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.1)))
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self._fc1(inputs[0])
|
||||
x = self._fc2(x)
|
||||
x = fluid.layers.reduce_sum(x)
|
||||
return x
|
||||
|
||||
|
||||
class TestImperative(unittest.TestCase):
|
||||
def test_layer(self):
|
||||
with fluid.imperative.guard():
|
||||
cl = core.Layer()
|
||||
cl.forward([])
|
||||
l = fluid.imperative.PyLayer()
|
||||
l.forward([])
|
||||
|
||||
def test_layer_in_out(self):
|
||||
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
|
||||
with fluid.imperative.guard():
|
||||
l = MyLayer()
|
||||
x = l(np_inp)[0]
|
||||
self.assertIsNotNone(x)
|
||||
dy_out = x._numpy()
|
||||
x._backward()
|
||||
dy_grad = l._x_for_debug._gradient()
|
||||
|
||||
with new_program_scope():
|
||||
inp = fluid.layers.data(
|
||||
name="inp", shape=[3], append_batch_size=False)
|
||||
l = MyLayer()
|
||||
x = l(inp)[0]
|
||||
param_grads = fluid.backward.append_backward(
|
||||
x, parameter_list=[l._x_for_debug.name])[0]
|
||||
exe = fluid.Executor(fluid.CPUPlace())
|
||||
|
||||
static_out, static_grad = exe.run(
|
||||
feed={inp.name: np_inp},
|
||||
fetch_list=[x.name, param_grads[1].name])
|
||||
|
||||
self.assertTrue(np.allclose(dy_out, static_out))
|
||||
self.assertTrue(np.allclose(dy_grad, static_grad))
|
||||
|
||||
def test_mlp(self):
|
||||
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
|
||||
with fluid.imperative.guard():
|
||||
mlp = MLP()
|
||||
out = mlp(np_inp)
|
||||
dy_out = out._numpy()
|
||||
out._backward()
|
||||
dy_grad = mlp._fc1._w._gradient()
|
||||
|
||||
with new_program_scope():
|
||||
inp = fluid.layers.data(
|
||||
name="inp", shape=[2, 2], append_batch_size=False)
|
||||
mlp = MLP()
|
||||
out = mlp(inp)
|
||||
param_grads = fluid.backward.append_backward(
|
||||
out, parameter_list=[mlp._fc1._w.name])[0]
|
||||
exe = fluid.Executor(fluid.CPUPlace())
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
static_out, static_grad = exe.run(
|
||||
feed={inp.name: np_inp},
|
||||
fetch_list=[out.name, param_grads[1].name])
|
||||
|
||||
self.assertTrue(np.allclose(dy_out, static_out))
|
||||
self.assertTrue(np.allclose(dy_grad, static_grad))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,129 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import contextlib
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import core
|
||||
from paddle.fluid.imperative.nn import Conv2D
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def new_program_scope():
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
scope = fluid.core.Scope()
|
||||
with fluid.scope_guard(scope):
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
yield
|
||||
|
||||
|
||||
class MNIST(fluid.imperative.PyLayer):
|
||||
def __init__(self):
|
||||
super(MNIST, self).__init__()
|
||||
|
||||
groups = 1
|
||||
dilation = [1, 1]
|
||||
pad = [0, 0]
|
||||
stride = [1, 1]
|
||||
input_size = [2, 3, 5, 5] # NCHW
|
||||
assert np.mod(input_size[1], groups) == 0
|
||||
f_c = input_size[1] // groups
|
||||
filter_size = [6, f_c, 3, 3]
|
||||
|
||||
self._conv2d = Conv2D(
|
||||
num_channels=3,
|
||||
num_filters=20,
|
||||
filter_size=3,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=groups,
|
||||
use_cudnn=False)
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self._conv2d(inputs)
|
||||
return x
|
||||
|
||||
|
||||
class TestImperativeMnist(unittest.TestCase):
|
||||
# def test_layer(self):
|
||||
# with fluid.imperative.guard():
|
||||
# cl = core.Layer()
|
||||
# cl.forward([])
|
||||
# l = fluid.imperative.PyLayer()
|
||||
# l.forward([])
|
||||
|
||||
# def test_layer_in_out(self):
|
||||
# np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
|
||||
# with fluid.imperative.guard():
|
||||
# l = MyLayer()
|
||||
# x = l(np_inp)[0]
|
||||
# self.assertIsNotNone(x)
|
||||
# dy_out = x._numpy()
|
||||
# x._backward()
|
||||
# dy_grad = l._x_for_debug._gradient()
|
||||
|
||||
# with new_program_scope():
|
||||
# inp = fluid.layers.data(
|
||||
# name="inp", shape=[3], append_batch_size=False)
|
||||
# l = MyLayer()
|
||||
# x = l(inp)[0]
|
||||
# param_grads = fluid.backward.append_backward(
|
||||
# x, parameter_list=[l._x_for_debug.name])[0]
|
||||
# exe = fluid.Executor(fluid.CPUPlace())
|
||||
|
||||
# static_out, static_grad = exe.run(
|
||||
# feed={inp.name: np_inp},
|
||||
# fetch_list=[x.name, param_grads[1].name])
|
||||
|
||||
# self.assertTrue(np.allclose(dy_out, static_out))
|
||||
# self.assertTrue(np.allclose(dy_grad, static_grad))
|
||||
|
||||
def test_mnist_cpu_float32(self):
|
||||
with fluid.imperative.guard():
|
||||
mnist = MNIST()
|
||||
|
||||
data = np.random.rand(2, 3, 5, 5).astype('float32')
|
||||
mnist(data)
|
||||
# np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
|
||||
# with fluid.imperative.guard():
|
||||
# mlp = MLP()
|
||||
# out = mlp(np_inp)
|
||||
# dy_out = out._numpy()
|
||||
# out._backward()
|
||||
# dy_grad = mlp._fc1._w._gradient()
|
||||
|
||||
# with new_program_scope():
|
||||
# inp = fluid.layers.data(
|
||||
# name="inp", shape=[2, 2], append_batch_size=False)
|
||||
# mlp = MLP()
|
||||
# out = mlp(inp)
|
||||
# param_grads = fluid.backward.append_backward(
|
||||
# out, parameter_list=[mlp._fc1._w.name])[0]
|
||||
# exe = fluid.Executor(fluid.CPUPlace())
|
||||
# exe.run(fluid.default_startup_program())
|
||||
|
||||
# static_out, static_grad = exe.run(
|
||||
# feed={inp.name: np_inp},
|
||||
# fetch_list=[out.name, param_grads[1].name])
|
||||
|
||||
# self.assertTrue(np.allclose(dy_out, static_out))
|
||||
# self.assertTrue(np.allclose(dy_grad, static_grad))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue