parent
83c228164b
commit
3d276277df
@ -0,0 +1,120 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/nce_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class NCEOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"));
|
||||
PADDLE_ENFORCE(ctx->HasInput("Label"));
|
||||
PADDLE_ENFORCE(ctx->HasInput("W"));
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"));
|
||||
PADDLE_ENFORCE(ctx->HasOutput("SampleLogits"));
|
||||
PADDLE_ENFORCE(ctx->HasOutput("SampleLabels"));
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto label_dims = ctx->GetInputDim("Label");
|
||||
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]);
|
||||
if (ctx->HasInput("B")) {
|
||||
PADDLE_ENFORCE_EQ(ctx->GetInputDim("W")[0], ctx->GetInputDim("B")[0]);
|
||||
}
|
||||
int num_sampled_classes = ctx->Attrs().Get<int>("num_sampled_classes");
|
||||
int num_classes = ctx->Attrs().Get<int>("num_classes");
|
||||
PADDLE_ENFORCE_EQ(num_classes, ctx->GetInputDim("W")[0]);
|
||||
PADDLE_ENFORCE_LT(num_sampled_classes, num_classes);
|
||||
|
||||
// set dims of output(Out)
|
||||
std::vector<int64_t> out_dims(1);
|
||||
out_dims.push_back(x_dims[0]);
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
|
||||
|
||||
// set dims of output(SampleOut)
|
||||
std::vector<int64_t> sample_out_dims(2);
|
||||
sample_out_dims.push_back(x_dims[0]);
|
||||
sample_out_dims.push_back(num_sampled_classes + 1);
|
||||
ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
|
||||
ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
|
||||
}
|
||||
};
|
||||
|
||||
class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
NCEOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "");
|
||||
AddInput("Label", "");
|
||||
AddInput("W", "");
|
||||
AddInput("B", "");
|
||||
AddInput("SampleWeight", "");
|
||||
AddOutput("Out", "");
|
||||
AddOutput("SampleLogits", "");
|
||||
AddOutput("SampleLabels", "");
|
||||
AddAttr<int>("num_classes", "");
|
||||
AddAttr<int>("num_sampled_classes", "").SetDefault(10);
|
||||
AddComment(R"DOC(
|
||||
Expand input(X) according to LOD of input(Y).
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class NCEOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"));
|
||||
PADDLE_ENFORCE(ctx->HasInput("W"));
|
||||
PADDLE_ENFORCE(ctx->HasInput("Out"));
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"The input(Out@GRAD) should not be null");
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto x_grad_name = framework::GradVarName("X");
|
||||
if (ctx->HasOutput(x_grad_name)) {
|
||||
ctx->SetOutputDim(x_grad_name, x_dims);
|
||||
}
|
||||
|
||||
auto w_dims = ctx->GetInputDim("W");
|
||||
auto w_grad_name = framework::GradVarName("W");
|
||||
if (ctx->HasOutput(w_grad_name)) {
|
||||
ctx->SetOutputDim(w_grad_name, w_dims);
|
||||
}
|
||||
|
||||
auto bias_grad_name = framework::GradVarName("B");
|
||||
if (ctx->HasOutput(bias_grad_name)) {
|
||||
auto bias_dims = ctx->GetInputDim("B");
|
||||
ctx->SetOutputDim(bias_grad_name, bias_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(nce, ops::NCEOp, ops::NCEOpMaker, nce_grad, ops::NCEOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(nce_grad,
|
||||
ops::NCEGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,210 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <random>
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/memory/memcpy.h"
|
||||
#include "unsupported/Eigen/CXX11/Tensor"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
void PrepareSamples(const framework::ExecutionContext& context) {
|
||||
auto label = context.Input<Tensor>("Label");
|
||||
const T* label_data = label->data<T>();
|
||||
auto label_dims = label->dims();
|
||||
int num_classes = context.Attr<int>("num_classes");
|
||||
// random machine
|
||||
std::random_device rd;
|
||||
std::mt19937 rng(rd());
|
||||
std::uniform_int_distribution<int> rand(0, num_classes - 1);
|
||||
|
||||
auto sample_labels = context.Output<Tensor>("SampleLabels");
|
||||
auto sample_labels_dims = sample_labels->dims();
|
||||
int* sample_labels_data =
|
||||
sample_labels->mutable_data<int>(context.GetPlace());
|
||||
|
||||
int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
|
||||
for (size_t i = 0; i < label_dims[0]; ++i) {
|
||||
int j = 0;
|
||||
for (; j < num_label; ++j) {
|
||||
sample_labels_data[sample_labels_dims[1] * i + j] =
|
||||
label_data[i * num_label + j];
|
||||
}
|
||||
for (; j < sample_labels_dims[1]; ++j) {
|
||||
int id = rand(rng);
|
||||
sample_labels_data[sample_labels_dims[1] * i + j] = id;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Place, typename T>
|
||||
class NCEKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
PrepareSamples<Place, T>(context);
|
||||
auto sample_labels = context.Output<Tensor>("SampleLabels");
|
||||
const int* sample_labels_data = sample_labels->data<int>();
|
||||
auto sample_out = context.Output<Tensor>("SampleLogits");
|
||||
T* sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
|
||||
auto label = context.Input<Tensor>("Label");
|
||||
auto sample_weight = context.Input<Tensor>("SampleWeight");
|
||||
const T* sample_weight_data = nullptr;
|
||||
if (sample_weight != nullptr) {
|
||||
sample_weight_data = sample_weight->data<T>();
|
||||
}
|
||||
auto out = context.Output<Tensor>("Out");
|
||||
T* out_data = out->mutable_data<T>(context.GetPlace());
|
||||
int num_smalped_classes = context.Attr<int>("num_sampled_classes");
|
||||
int num_classes = context.Attr<int>("num_classes");
|
||||
int num_true_class = 1;
|
||||
if (label != nullptr) {
|
||||
num_true_class = label->dims()[1];
|
||||
}
|
||||
T b = 1. / num_classes * num_smalped_classes;
|
||||
|
||||
// forward bias
|
||||
auto bias = context.Input<Tensor>("B");
|
||||
if (bias != nullptr) {
|
||||
const T* bias_data = bias->data<T>();
|
||||
for (size_t i = 0; i < sample_labels->numel(); ++i) {
|
||||
sample_out_data[i] = bias_data[sample_labels_data[i]];
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < sample_labels->numel(); ++i) {
|
||||
sample_out_data[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// forward mul
|
||||
auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("X")));
|
||||
auto weight_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("W")));
|
||||
for (size_t i = 0; i < sample_labels->numel(); ++i) {
|
||||
// sample_out_data[i] += (input_mat.chip((int)(i /
|
||||
// sample_labels->dims()[1]), 0) * weight_mat.chip(sample_labels_data[i],
|
||||
// 0)).sum();
|
||||
Eigen::Tensor<float, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
|
||||
(input_mat.chip((int)(i / sample_labels->dims()[1]), 0) *
|
||||
weight_mat.chip(sample_labels_data[i], 0))
|
||||
.sum();
|
||||
sample_out_data[i] += result(0);
|
||||
// activation_->forward
|
||||
sample_out_data[i] = (1 / 1 + (sample_out_data[i]));
|
||||
}
|
||||
|
||||
// forward cost
|
||||
for (size_t i = 0; i < sample_labels->dims()[0]; ++i) {
|
||||
size_t j = 0;
|
||||
T w = sample_weight == nullptr ? 1 : sample_weight_data[i];
|
||||
// for true classes
|
||||
for (; j < num_true_class; ++j) {
|
||||
T o = sample_out_data[i * sample_out->dims()[1] + j];
|
||||
T cost = -log(o / (o + b));
|
||||
out_data[i] += w * cost;
|
||||
}
|
||||
// for sampled neg classes
|
||||
for (; j < sample_labels->dims()[1]; ++j) {
|
||||
T o = sample_out_data[i * sample_out->dims()[1] + j];
|
||||
T cost = -log(b / (o + b));
|
||||
out_data[i] += w * cost;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class NCEGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto label = context.Input<Tensor>("Label");
|
||||
auto sample_out = context.Input<Tensor>("SampleLogits");
|
||||
const T* sample_out_data = sample_out->data<T>();
|
||||
auto sample_labels = context.Input<Tensor>("SampleLabels");
|
||||
const int* sample_labels_data = sample_labels->data<int>();
|
||||
auto sample_weight = context.Input<Tensor>("SampleWeight");
|
||||
const T* sample_weight_data = nullptr;
|
||||
if (sample_weight != nullptr) {
|
||||
sample_weight_data = sample_weight->data<T>();
|
||||
}
|
||||
int num_smalped_classes = context.Attr<int>("num_sampled_classes");
|
||||
int num_classes = context.Attr<int>("num_classes");
|
||||
int num_true_class = 1;
|
||||
if (label != nullptr) {
|
||||
num_true_class = label->dims()[1];
|
||||
}
|
||||
T b = 1. / num_classes * num_smalped_classes;
|
||||
|
||||
Tensor sample_grad; // tmp tensor
|
||||
T* sample_grad_data =
|
||||
sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
|
||||
|
||||
// backward cost
|
||||
for (size_t i = 0; i < sample_labels->numel(); ++i) {
|
||||
T o = sample_out_data[i];
|
||||
T w = sample_weight == nullptr
|
||||
? 1
|
||||
: sample_weight_data[i / sample_labels->dims()[1]];
|
||||
sample_grad_data[i] = (i % sample_labels->dims()[1]) < num_true_class
|
||||
? -w * b / (o * (o + b))
|
||||
: w / (o + b);
|
||||
// sigmoid->backward
|
||||
sample_grad_data[i] =
|
||||
(o > 0) ? sample_grad_data[i] : ((o < 0) ? -sample_grad_data[i] : 0);
|
||||
}
|
||||
|
||||
// get d_bias
|
||||
auto d_bias = context.Output<Tensor>(framework::GradVarName("B"));
|
||||
if (d_bias != nullptr) {
|
||||
T* d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
|
||||
for (size_t i = 0; i < sample_labels->numel(); ++i) {
|
||||
d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
|
||||
}
|
||||
}
|
||||
// get d_w
|
||||
auto d_w = context.Output<Tensor>(framework::GradVarName("W"));
|
||||
if (d_w != nullptr) {
|
||||
auto d_w_matrix = EigenMatrix<T>::From(*d_w);
|
||||
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("X")));
|
||||
for (size_t i = 0; i < sample_labels->numel(); ++i) {
|
||||
d_w_matrix.chip(sample_labels_data[i], 0) =
|
||||
x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) *
|
||||
sample_grad_data[i];
|
||||
}
|
||||
}
|
||||
|
||||
// get d_x
|
||||
auto d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
if (d_x != nullptr) {
|
||||
auto d_x_matrix = EigenMatrix<T>::From(*d_x);
|
||||
auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("W")));
|
||||
for (size_t i = 0; i < sample_labels->numel(); ++i) {
|
||||
d_x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) +=
|
||||
w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Loading…
Reference in new issue