|
|
|
@ -478,8 +478,7 @@ def conv2d(input,
|
|
|
|
|
groups=None,
|
|
|
|
|
param_attr=None,
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
act=None,
|
|
|
|
|
name=None):
|
|
|
|
|
act=None):
|
|
|
|
|
"""
|
|
|
|
|
**Convlution2D Layer**
|
|
|
|
|
|
|
|
|
@ -498,46 +497,51 @@ def conv2d(input,
|
|
|
|
|
|
|
|
|
|
Out = \sigma (W \\ast X + b)
|
|
|
|
|
|
|
|
|
|
In the above equation:
|
|
|
|
|
In the above equation:
|
|
|
|
|
|
|
|
|
|
* :math:`X`: Input value, a tensor with NCHW format.
|
|
|
|
|
* :math:`W`: Filter value, a tensor with MCHW format.
|
|
|
|
|
* :math: \\ast : Convolution operation.
|
|
|
|
|
* :math:`\\ast`: Convolution operation.
|
|
|
|
|
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
|
|
|
|
|
* :math: \\sigma : Activation function.
|
|
|
|
|
* :math:`\\sigma`: Activation function.
|
|
|
|
|
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
|
|
- Input:
|
|
|
|
|
Input shape: $(N, C_{in}, H_{in}, W_{in})$
|
|
|
|
|
Input:
|
|
|
|
|
Input shape: $(N, C_{in}, H_{in}, W_{in})$
|
|
|
|
|
|
|
|
|
|
Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
|
|
|
|
|
Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
|
|
|
|
|
|
|
|
|
|
- Output:
|
|
|
|
|
Output shape: $(N, C_{out}, H_{out}, W_{out})$
|
|
|
|
|
Output:
|
|
|
|
|
Output shape: $(N, C_{out}, H_{out}, W_{out})$
|
|
|
|
|
Where
|
|
|
|
|
.. math::
|
|
|
|
|
|
|
|
|
|
H_{out}= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1
|
|
|
|
|
|
|
|
|
|
W_{out}= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
|
|
|
|
|
.. math::
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
All the input variables are passed in as local variables to the LayerHelper
|
|
|
|
|
constructor.
|
|
|
|
|
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
|
|
|
|
|
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
input(Variable): Input tensors. The format of input tensor is NCHW.
|
|
|
|
|
num_filters(int): Number of filters
|
|
|
|
|
filter_size(list/int): Filter size of Conv2d Layer
|
|
|
|
|
stride(list/int, optional): Strides(h_s, w_s) of Conv2d Layer. Default: 1
|
|
|
|
|
padding(list/int, optional): Paddings(h_pad, w_pad) of Conv2d Layer. Default: 0
|
|
|
|
|
groups(int, optional): The groups number of the Conv2d Layer. Default: 1
|
|
|
|
|
param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
|
|
|
|
|
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
|
|
|
|
|
act(str): Activation type. Default: None
|
|
|
|
|
name(str): Name/alias of the function
|
|
|
|
|
input(Variable): The input image with [N, C, H, W] format.
|
|
|
|
|
num_filters(int): The number of filter. It is as same as the output
|
|
|
|
|
image channel.
|
|
|
|
|
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
|
|
|
|
|
it must contain two integers, (filter_size_H, filter_size_W).
|
|
|
|
|
Otherwise, the filter will be a square.
|
|
|
|
|
stride(int|tuple): The stride size. If stride is a tuple, it must
|
|
|
|
|
contain two integers, (stride_H, stride_W). Otherwise, the
|
|
|
|
|
stride_H = stride_W = stride. Default: stride = 1.
|
|
|
|
|
padding(int|tuple): The padding size. If padding is a tuple, it must
|
|
|
|
|
contain two integers, (padding_H, padding_W). Otherwise, the
|
|
|
|
|
padding_H = padding_W = padding. Default: padding = 0.
|
|
|
|
|
groups(int): The groups number of the Conv2d Layer. According to grouped
|
|
|
|
|
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
|
|
|
|
|
the first half of the filters is only connected to the first half
|
|
|
|
|
of the input channels, while the second half of the filters is only
|
|
|
|
|
connected to the second half of the input channels. Default: groups=1
|
|
|
|
|
param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
|
|
|
|
|
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
|
|
|
|
|
act(str): Activation type. Default: None
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Variable: The tensor variable storing the convolution and \
|
|
|
|
|