|
|
|
@ -2,7 +2,7 @@ import unittest
|
|
|
|
|
|
|
|
|
|
import paddle.v2.fluid.framework as framework
|
|
|
|
|
import paddle.v2.fluid.optimizer as optimizer
|
|
|
|
|
from paddle.v2.fluid.backward import append_backward_ops
|
|
|
|
|
from paddle.v2.fluid.backward import append_backward
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestOptimizer(unittest.TestCase):
|
|
|
|
@ -102,7 +102,7 @@ class TestMomentumOptimizer(unittest.TestCase):
|
|
|
|
|
dtype="float32", shape=[1], lod_level=0, name="mean.out")
|
|
|
|
|
block.append_op(
|
|
|
|
|
type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
|
|
|
|
|
params_grads = append_backward_ops(mean_out)
|
|
|
|
|
params_grads = append_backward(mean_out)
|
|
|
|
|
self.assertEqual(len(params_grads), 1)
|
|
|
|
|
self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
|
|
|
|
|
opts = momentum_optimizer.create_optimization_pass(
|
|
|
|
@ -151,7 +151,7 @@ class TestMomentumOptimizer(unittest.TestCase):
|
|
|
|
|
learning_rate = 0.01
|
|
|
|
|
momentum_optimizer = self.MockMomentum(
|
|
|
|
|
learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
|
|
|
|
|
params_grads = append_backward_ops(mean_out)
|
|
|
|
|
params_grads = append_backward(mean_out)
|
|
|
|
|
self.assertEqual(len(params_grads), 1)
|
|
|
|
|
self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
|
|
|
|
|
opts = momentum_optimizer.create_optimization_pass(
|
|
|
|
@ -209,7 +209,7 @@ class TestAdagradOptimizer(unittest.TestCase):
|
|
|
|
|
learning_rate = 0.01
|
|
|
|
|
adagrad_optimizer = self.MockAdagrad(
|
|
|
|
|
learning_rate=learning_rate, epsilon=1.0e-6)
|
|
|
|
|
params_grads = append_backward_ops(mean_out)
|
|
|
|
|
params_grads = append_backward(mean_out)
|
|
|
|
|
self.assertEqual(len(params_grads), 1)
|
|
|
|
|
self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
|
|
|
|
|
opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out,
|
|
|
|
@ -269,7 +269,7 @@ class TestAdamOptimizer(unittest.TestCase):
|
|
|
|
|
learning_rate = 0.01
|
|
|
|
|
adam_optimizer = self.MockAdam(
|
|
|
|
|
learning_rate=learning_rate, beta1=0.9, beta2=0.999)
|
|
|
|
|
params_grads = append_backward_ops(mean_out)
|
|
|
|
|
params_grads = append_backward(mean_out)
|
|
|
|
|
self.assertEqual(len(params_grads), 1)
|
|
|
|
|
self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
|
|
|
|
|
opts = adam_optimizer.create_optimization_pass(params_grads, mul_out,
|
|
|
|
@ -331,7 +331,7 @@ class TestAdamaxOptimizer(unittest.TestCase):
|
|
|
|
|
learning_rate = 0.01
|
|
|
|
|
adamax_optimizer = self.MockAdamax(
|
|
|
|
|
learning_rate=learning_rate, beta1=0.9, beta2=0.999)
|
|
|
|
|
params_grads = append_backward_ops(mean_out)
|
|
|
|
|
params_grads = append_backward(mean_out)
|
|
|
|
|
self.assertEqual(len(params_grads), 1)
|
|
|
|
|
self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
|
|
|
|
|
opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out,
|
|
|
|
@ -390,7 +390,7 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
|
|
|
|
|
learning_rate = 0.01
|
|
|
|
|
decayed_adagrad_optimizer = self.MockDecayedAdagrad(
|
|
|
|
|
learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
|
|
|
|
|
params_grads = append_backward_ops(mean_out)
|
|
|
|
|
params_grads = append_backward(mean_out)
|
|
|
|
|
self.assertEqual(len(params_grads), 1)
|
|
|
|
|
self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
|
|
|
|
|
opts = decayed_adagrad_optimizer.create_optimization_pass(
|
|
|
|
|