refine shape and split test. test=develop (#17545)
parent
2dc1c6f25c
commit
3db9c8c982
@ -0,0 +1,127 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.layers as layers
|
||||
import paddle.fluid.core as core
|
||||
import gradient_checker
|
||||
|
||||
from decorator_helper import prog_scope
|
||||
|
||||
|
||||
class TestReluDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
x.persistable = True
|
||||
y = layers.relu(x)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
x_arr[np.abs(x_arr) < 0.005] = 0.02
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x], y, x_init=x_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestLeakyReluDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
alpha = 0.2
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
x.persistable = True
|
||||
|
||||
y = layers.leaky_relu(x, alpha=alpha)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
x_arr[np.abs(x_arr) < 0.005] = 0.02
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x], y, x_init=x_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places = [fluid.CUDAPlace(0)]
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestSqrtDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.0001
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
x.persistable = True
|
||||
|
||||
y = layers.sqrt(x)
|
||||
x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x], y, x_init=x_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places = [fluid.CUDAPlace(0)]
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestSquareDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
x.persistable = True
|
||||
y = layers.square(x)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x], y, x_init=x_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,247 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.layers as layers
|
||||
import paddle.fluid.core as core
|
||||
import gradient_checker
|
||||
|
||||
from decorator_helper import prog_scope
|
||||
|
||||
|
||||
class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.data('y', shape, False, dtype)
|
||||
x.persistable = True
|
||||
y.persistable = True
|
||||
out = layers.elementwise_mul(x, y)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.data('y', shape[:-1], False, dtype)
|
||||
x.persistable = True
|
||||
y.persistable = True
|
||||
out = layers.elementwise_mul(x, y, axis=0)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.data('y', shape, False, dtype)
|
||||
x.persistable = True
|
||||
y.persistable = True
|
||||
out = layers.elementwise_add(x, y)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.data('y', shape[:-1], False, dtype)
|
||||
x.persistable = True
|
||||
y.persistable = True
|
||||
out = layers.elementwise_add(x, y, axis=0)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.data('y', shape, False, dtype)
|
||||
x.persistable = True
|
||||
y.persistable = True
|
||||
out = layers.elementwise_sub(x, y)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.data('y', shape[:-1], False, dtype)
|
||||
x.persistable = True
|
||||
y.persistable = True
|
||||
out = layers.elementwise_sub(x, y, axis=0)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.0001
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.data('y', shape, False, dtype)
|
||||
x.persistable = True
|
||||
y.persistable = True
|
||||
out = layers.elementwise_div(x, y, axis=0)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr[np.abs(y_arr) < 0.005] = 0.02
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 3, 7, 9]
|
||||
eps = 0.0001
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.data('y', shape[1:-1], False, dtype)
|
||||
x.persistable = True
|
||||
y.persistable = True
|
||||
out = layers.elementwise_div(x, y, axis=1)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype)
|
||||
y_arr[np.abs(y_arr) < 0.005] = 0.02
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue