parent
843a8b1e5d
commit
3e13b9122f
@ -0,0 +1,82 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
:A
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/softmax_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class SoftmaxWithLossOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
auto logits = ctx.Input<Tensor>("logits");
|
||||
PADDLE_ENFORCE(logits->dims().size() == 2UL,
|
||||
"The input of softmax_with_loss_op should be a 2-d tensor.");
|
||||
PADDLE_ENFORCE(ctx.Input<Tensor>("lables")->dims().size() == 1UL,
|
||||
"The label should be a 1-d tensor.");
|
||||
ctx.Output<Tensor>("loss")->Resize({logits->dims()[0]});
|
||||
}
|
||||
};
|
||||
|
||||
class SoftmaxWithLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SoftmaxWithLossOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("logits",
|
||||
"The unscaled log probabilities which is a 2-D tensor<float> with"
|
||||
"shape [N x K]. N is the batch_size, and K is the class number.");
|
||||
AddInput("label", "The ground truth. A 1-D tensor<int> with shape N.");
|
||||
AddOutput("loss", "A 1-D tensor<float> with shape N.");
|
||||
AddComment(R"DOC(
|
||||
Cross entropy loss with softmax are used as the output layer extensively. This
|
||||
operator computes the softmax normalized values for each row of the input
|
||||
tensor, after which cross-entropy loss is then computed. This provides a more
|
||||
numerically stable gradient.
|
||||
|
||||
Because this operators performs a softmax on logits internally, it expects
|
||||
unscaled logits. Please do not call this op with the output of softmax operator,
|
||||
which will produce incorrect results.
|
||||
|
||||
This operators expects mutually exclusive hard labels, each sample in a batch
|
||||
is in exactly one class with probabilities 1. Each sample in the batch with one
|
||||
and only one label.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SoftmaxWithLossOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP(softmax, ops::SoftmaxWithLossOp, ops::SoftmaxWithLossOpMaker,
|
||||
softmax_grad, ops::SoftmaxWithLossOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
softmax, ops::SoftmaxWithLossKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
softmax_grad,
|
||||
ops::SoftmaxWithLossGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,40 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class SoftmaxWithLossKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class SoftmaxWithLossGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,22 @@
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gradient_checker import GradientChecker, create_op
|
||||
from op_test_util import OpTestMeta
|
||||
|
||||
|
||||
class TestSoftmaxWithLossOp(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
|
||||
class SoftmaxWithLossGradOpTest(GradientChecker):
|
||||
def test_softmax(self):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue