parent
430fdc52a8
commit
3e195d86d8
@ -0,0 +1,103 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle.v2.fluid as fluid
|
||||
import paddle.v2.fluid.core as core
|
||||
import numpy as np
|
||||
|
||||
import pdb
|
||||
|
||||
|
||||
class TestMultiheadAttention(unittest.TestCase):
|
||||
def gen_random_input(self):
|
||||
"""Generate random input data.
|
||||
"""
|
||||
# batch_size, max_sequence_length, hidden dimension
|
||||
self.input_shape = (3, 13, 16)
|
||||
self.queries = np.random.random(size=self.input_shape).astype("float32")
|
||||
self.keys = np.random.random(size=self.input_shape).astype("float32")
|
||||
|
||||
def set_program(self):
|
||||
"""Build the test program.
|
||||
"""
|
||||
queries = fluid.layers.data(
|
||||
name="queries",
|
||||
shape=self.input_shape,
|
||||
dtype="float32",
|
||||
append_batch_size=False)
|
||||
queries.stop_gradient = False
|
||||
keys = fluid.layers.data(
|
||||
name="keys",
|
||||
shape=self.input_shape,
|
||||
dtype="float32",
|
||||
append_batch_size=False)
|
||||
keys.stop_gradient = False
|
||||
|
||||
contexts, att_scores = fluid.nets.scaled_dot_product_attention(
|
||||
queries=queries,
|
||||
keys=keys,
|
||||
values=keys,
|
||||
num_heads=8,
|
||||
dropout_rate=0.)
|
||||
out = fluid.layers.reduce_sum(contexts, dim=None)
|
||||
fluid.backward.append_backward(loss=out)
|
||||
|
||||
self.fetch_list = [contexts]
|
||||
|
||||
def run_program(self):
|
||||
"""Run the test program.
|
||||
"""
|
||||
places = [core.CPUPlace()]
|
||||
if core.is_compile_gpu():
|
||||
places.append(core.CUDAPlace(0))
|
||||
|
||||
for place in places:
|
||||
self.set_inputs(place)
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
output = exe.run(fluid.default_main_program(),
|
||||
feed=self.inputs,
|
||||
fetch_list=self.fetch_list,
|
||||
return_numpy=True)
|
||||
self.op_output = output
|
||||
|
||||
def set_inputs(self, place):
|
||||
"""Set the randomly generated data to the test program.
|
||||
"""
|
||||
self.inputs = {}
|
||||
queries = fluid.Tensor()
|
||||
queries.set(self.queries, place)
|
||||
|
||||
keys = fluid.Tensor()
|
||||
keys.set(self.keys, place)
|
||||
|
||||
self.inputs["keys"] = keys
|
||||
self.inputs["values"] = values
|
||||
|
||||
def test_multihead_attention(self):
|
||||
self.gen_random_input()
|
||||
|
||||
self.set_program()
|
||||
pdb.set_trace()
|
||||
self.run_program()
|
||||
|
||||
expect_output = self.l2_normalize(self.data, axis, epsilon)
|
||||
|
||||
# check output
|
||||
self.assertTrue(np.allclose(self.op_output, expect_output, atol=0.001))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue