parent
7cfd4e4e86
commit
3eef539a42
@ -0,0 +1,146 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
import math
|
||||
import sys
|
||||
from functools import partial
|
||||
|
||||
PASS_NUM = 100
|
||||
EMBED_SIZE = 32
|
||||
HIDDEN_SIZE = 256
|
||||
N = 5
|
||||
BATCH_SIZE = 32
|
||||
|
||||
|
||||
def create_random_lodtensor(lod, place, low, high):
|
||||
# The range of data elements is [low, high]
|
||||
data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
|
||||
res = fluid.LoDTensor()
|
||||
res.set(data, place)
|
||||
res.set_lod([lod])
|
||||
return res
|
||||
|
||||
|
||||
word_dict = paddle.dataset.imikolov.build_dict()
|
||||
dict_size = len(word_dict)
|
||||
|
||||
|
||||
def inference_network(is_sparse):
|
||||
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
|
||||
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
|
||||
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
|
||||
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
|
||||
|
||||
embed_first = fluid.layers.embedding(
|
||||
input=first_word,
|
||||
size=[dict_size, EMBED_SIZE],
|
||||
dtype='float32',
|
||||
is_sparse=is_sparse,
|
||||
param_attr='shared_w')
|
||||
embed_second = fluid.layers.embedding(
|
||||
input=second_word,
|
||||
size=[dict_size, EMBED_SIZE],
|
||||
dtype='float32',
|
||||
is_sparse=is_sparse,
|
||||
param_attr='shared_w')
|
||||
embed_third = fluid.layers.embedding(
|
||||
input=third_word,
|
||||
size=[dict_size, EMBED_SIZE],
|
||||
dtype='float32',
|
||||
is_sparse=is_sparse,
|
||||
param_attr='shared_w')
|
||||
embed_forth = fluid.layers.embedding(
|
||||
input=forth_word,
|
||||
size=[dict_size, EMBED_SIZE],
|
||||
dtype='float32',
|
||||
is_sparse=is_sparse,
|
||||
param_attr='shared_w')
|
||||
|
||||
concat_embed = fluid.layers.concat(
|
||||
input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
|
||||
hidden1 = fluid.layers.fc(input=concat_embed,
|
||||
size=HIDDEN_SIZE,
|
||||
act='sigmoid')
|
||||
predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
|
||||
return predict_word
|
||||
|
||||
|
||||
def train_network():
|
||||
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
|
||||
predict_word = inference_network()
|
||||
cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
return avg_cost
|
||||
|
||||
|
||||
def train(use_cuda, is_sparse, save_path):
|
||||
train_reader = paddle.batch(
|
||||
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
|
||||
|
||||
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||
|
||||
def event_handler(event):
|
||||
if isinstance(event, fluid.EndPass):
|
||||
avg_cost = trainer.test(reader=paddle.dataset.imikolov.test(
|
||||
word_dict, N))
|
||||
|
||||
if avg_cost < 5.0:
|
||||
trainer.params.save(save_path)
|
||||
return
|
||||
if math.isnan(avg_cost):
|
||||
sys.exit("got NaN loss, training failed.")
|
||||
|
||||
trainer = fluid.Trainer(
|
||||
partial(inference_network, is_sparse),
|
||||
optimizer=fluid.optimizer.SGD(learning_rate=0.001),
|
||||
place=place,
|
||||
event_handler=event_handler)
|
||||
trainer.train(train_reader, 100)
|
||||
|
||||
|
||||
def infer(use_cuda, save_path):
|
||||
params = fluid.Params(save_path)
|
||||
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||
inferencer = fluid.Inferencer(inference_network, params, place=place)
|
||||
|
||||
lod = [0, 1]
|
||||
first_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
|
||||
second_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
|
||||
third_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
|
||||
fourth_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
|
||||
result = inferencer.infer({
|
||||
'firstw': first_word,
|
||||
'secondw': second_word,
|
||||
'thirdw': third_word,
|
||||
'forthw': fourth_word
|
||||
})
|
||||
print(result)
|
||||
|
||||
|
||||
def main(use_cuda, is_sparse):
|
||||
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
||||
return
|
||||
|
||||
save_path = "word2vec.inference.model"
|
||||
train(use_cuda, is_sparse, save_path)
|
||||
infer(use_cuda, save_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
for use_cuda in (False, True):
|
||||
for is_sparse in (False, True):
|
||||
main(use_cuda=use_cuda, is_sparse=is_sparse)
|
Loading…
Reference in new issue