commit
4137cb0baf
@ -0,0 +1,107 @@
|
||||
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/reshape_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class ReshapeOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
// input check
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null");
|
||||
auto shape = ctx.Attr<std::vector<int>>("shape");
|
||||
PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
|
||||
for (auto dim : shape) {
|
||||
PADDLE_ENFORCE(dim > 0, "Each dimension of shape must be positive.");
|
||||
}
|
||||
// capacity check
|
||||
int64_t capacity =
|
||||
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
|
||||
auto *in = ctx.Input<framework::Tensor>("X");
|
||||
int64_t in_size = framework::product(in->dims());
|
||||
PADDLE_ENFORCE_EQ(capacity, in_size,
|
||||
"The size of Input(X) mismatches with Attr(shape).");
|
||||
// resize output
|
||||
std::vector<int64_t> shape_int64(shape.size(), 0);
|
||||
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
|
||||
[](int a) { return static_cast<int64_t>(a); });
|
||||
auto out_dims = framework::make_ddim(shape_int64);
|
||||
ctx.Output<framework::Tensor>("Out")->Resize(out_dims);
|
||||
}
|
||||
};
|
||||
|
||||
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ReshapeOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The input tensor of reshape operator.");
|
||||
AddOutput("Out", "The output tensor of reshape operator.");
|
||||
AddAttr<std::vector<int>>("shape", "Target shape of reshape operator.");
|
||||
AddComment(R"DOC(Reshape operator
|
||||
|
||||
Reshape Input(X) into the shape specified by Attr(shape).
|
||||
|
||||
An example:
|
||||
Given a 2-D tensor X with 2 rows and 2 columns
|
||||
|
||||
[[1, 2], [3, 4]]
|
||||
|
||||
with target shape = [1, 4], the reshape operator will transform
|
||||
the tensor X into a 1-D tensor:
|
||||
|
||||
[1, 2, 3, 4]
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class ReshapeGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
ReshapeGradOp(const std::string &type,
|
||||
const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null.");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) shouldn't be null.");
|
||||
auto dims = ctx.Input<framework::Tensor>("X")->dims();
|
||||
auto *d_in = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
d_in->Resize(dims);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
|
||||
ops::ReshapeGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(reshape,
|
||||
ops::ReshapeKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
reshape_grad, ops::ReshapeGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,22 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/reshape_op.h"
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
reshape,
|
||||
paddle::operators::ReshapeKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
reshape_grad,
|
||||
paddle::operators::ReshapeGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,56 @@
|
||||
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ReshapeKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* out = ctx.Output<framework::Tensor>("Out");
|
||||
auto* in = ctx.Input<framework::Tensor>("X");
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto shape = ctx.Attr<std::vector<int>>("shape");
|
||||
std::vector<int64_t> shape_int64(shape.size(), 0);
|
||||
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
|
||||
[](int a) { return static_cast<int64_t>(a); });
|
||||
auto out_dims = framework::make_ddim(shape_int64);
|
||||
out->CopyFrom<T>(*in, ctx.GetPlace());
|
||||
out->Resize(out_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ReshapeGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
d_x->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto in_dims = d_x->dims();
|
||||
d_x->CopyFrom<T>(*d_out, ctx.GetPlace());
|
||||
d_x->Resize(in_dims);
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
@ -0,0 +1,21 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestReshapeOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "reshape"
|
||||
self.inputs = {'X': np.random.random((10, 20)).astype("float32")}
|
||||
self.attrs = {'shape': [10 * 20]}
|
||||
self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue