|
|
|
@ -88,158 +88,73 @@ class TestListenAndServOp(unittest.TestCase):
|
|
|
|
|
port = int(f.read().strip())
|
|
|
|
|
return port
|
|
|
|
|
|
|
|
|
|
def _run_nce_op_one_pserver(self, place, port):
|
|
|
|
|
def _run_nce_op_two_pserver(self, place, port0, port1):
|
|
|
|
|
scope = fluid.core.Scope()
|
|
|
|
|
program = Program()
|
|
|
|
|
with fluid.scope_guard(scope):
|
|
|
|
|
with program_guard(program, startup_program=Program()):
|
|
|
|
|
x = scope.var('X').get_tensor()
|
|
|
|
|
x = scope.var('Input').get_tensor()
|
|
|
|
|
x_array = np.random.random((4, 8)).astype("float32") * 2
|
|
|
|
|
x.set(x_array, place)
|
|
|
|
|
# create and initialize Param Variable
|
|
|
|
|
param = scope.var('W').get_tensor()
|
|
|
|
|
param = scope.var('Weight').get_tensor()
|
|
|
|
|
param_array = np.zeros((5, 8)).astype("float32") * 2
|
|
|
|
|
param.set(param_array, place)
|
|
|
|
|
|
|
|
|
|
path_table = scope.var('PathTable').get_tensor()
|
|
|
|
|
path_table_array = np.array(
|
|
|
|
|
[(0, 2, -1, -1, -1), (0, 1, 2, -1, -1), (0, 1, 4, -1, -1),
|
|
|
|
|
(0, 2, -1, -1, -1)]).astype(
|
|
|
|
|
"int64"
|
|
|
|
|
) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
|
|
|
|
|
path_table.set(path_table_array, place)
|
|
|
|
|
|
|
|
|
|
path_code = scope.var('PathCode').get_tensor()
|
|
|
|
|
path_code_array = np.array(
|
|
|
|
|
[(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1),
|
|
|
|
|
(0, 1, -1, -1, -1)]).astype("int64") #np.array to store
|
|
|
|
|
path_code.set(path_code_array, place)
|
|
|
|
|
|
|
|
|
|
label = scope.var('Label').get_tensor()
|
|
|
|
|
label_array = np.array([0, 1, 4, 5])
|
|
|
|
|
label.set(label_array, place)
|
|
|
|
|
|
|
|
|
|
bias = scope.var('Bias').get_tensor()
|
|
|
|
|
bias_array = np.random.random((5, 1)).astype("float32")
|
|
|
|
|
bias.set(bias_array, place)
|
|
|
|
|
|
|
|
|
|
out = scope.var('Out').get_tensor()
|
|
|
|
|
|
|
|
|
|
pre_out = scope.var('PreOut').get_tensor
|
|
|
|
|
|
|
|
|
|
w_out = scope.var('W_Out').get_tensor()
|
|
|
|
|
w_out.set(param_array, place)
|
|
|
|
|
|
|
|
|
|
emaps = ['127.0.0.1:' + str(port)]
|
|
|
|
|
table_names = ['table']
|
|
|
|
|
height_sections = [2]
|
|
|
|
|
|
|
|
|
|
# create and run sgd operator
|
|
|
|
|
hsigmoid_op = Operator(
|
|
|
|
|
"hierarchical_sigmoid",
|
|
|
|
|
X='X',
|
|
|
|
|
W='W',
|
|
|
|
|
PathTable='PathTable',
|
|
|
|
|
PathCode='PathCode',
|
|
|
|
|
Label='Label',
|
|
|
|
|
Bias='Bias',
|
|
|
|
|
Out='Out',
|
|
|
|
|
PreOut='PreOut',
|
|
|
|
|
W_Out='W_Out',
|
|
|
|
|
remote_prefetch=True,
|
|
|
|
|
epmap=emaps,
|
|
|
|
|
table_names=table_names,
|
|
|
|
|
height_sections=height_sections)
|
|
|
|
|
|
|
|
|
|
hsigmoid_op.run(scope, place)
|
|
|
|
|
|
|
|
|
|
# get and compare result
|
|
|
|
|
result_array = np.array(w_out)
|
|
|
|
|
self.assertEqual(list(result_array.shape), [5, 8])
|
|
|
|
|
correct = None
|
|
|
|
|
for i in range(5):
|
|
|
|
|
if i != 3:
|
|
|
|
|
correct = np.full((1, 8), i + 1).astype("float32")
|
|
|
|
|
self.assertTrue((result_array[i] == correct).all())
|
|
|
|
|
else:
|
|
|
|
|
correct = np.full((1, 8), 0).astype("float32")
|
|
|
|
|
self.assertTrue((result_array[i] == correct).all())
|
|
|
|
|
|
|
|
|
|
def _run_nce_op_two_pserver(self, place, port0, port1):
|
|
|
|
|
scope = fluid.core.Scope()
|
|
|
|
|
program = Program()
|
|
|
|
|
with fluid.scope_guard(scope):
|
|
|
|
|
with program_guard(program, startup_program=Program()):
|
|
|
|
|
x = scope.var('X').get_tensor()
|
|
|
|
|
x_array = np.random.random((4, 8)).astype("float32") * 2
|
|
|
|
|
x.set(x_array, place)
|
|
|
|
|
# create and initialize Param Variable
|
|
|
|
|
param = scope.var('W').get_tensor()
|
|
|
|
|
param_array = np.zeros((5, 8)).astype("float32") * 2
|
|
|
|
|
param.set(param_array, place)
|
|
|
|
|
|
|
|
|
|
path_table = scope.var('PathTable').get_tensor()
|
|
|
|
|
path_table_array = np.array(
|
|
|
|
|
[(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
|
|
|
|
|
(0, 2, -1, -1, -1)]).astype(
|
|
|
|
|
"int64"
|
|
|
|
|
) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
|
|
|
|
|
path_table.set(path_table_array, place)
|
|
|
|
|
|
|
|
|
|
path_code = scope.var('PathCode').get_tensor()
|
|
|
|
|
path_code_array = np.array(
|
|
|
|
|
[(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1),
|
|
|
|
|
(0, 1, -1, -1, -1)]).astype("int64") #np.array to store
|
|
|
|
|
path_code.set(path_code_array, place)
|
|
|
|
|
sample_w = scope.var('SampleWeight').get_tensor()
|
|
|
|
|
sample_weight = np.random.random((4, 1)).astype("float32")
|
|
|
|
|
sample_w.set(sample_weight, place)
|
|
|
|
|
|
|
|
|
|
label = scope.var('Label').get_tensor()
|
|
|
|
|
label_array = np.array([0, 1, 4, 5])
|
|
|
|
|
label.set(label_array, place)
|
|
|
|
|
|
|
|
|
|
bias = scope.var('Bias').get_tensor()
|
|
|
|
|
bias_array = np.random.random((5, 1)).astype("float32")
|
|
|
|
|
bias.set(bias_array, place)
|
|
|
|
|
cost = scope.var('Cost').get_tensor()
|
|
|
|
|
cost_w = np.zeros((4, 1)).astype("float32")
|
|
|
|
|
cost.set(cost_w, place)
|
|
|
|
|
|
|
|
|
|
out = scope.var('Out').get_tensor()
|
|
|
|
|
sample_l = scope.var('SampleLogits').get_tensor()
|
|
|
|
|
sample_l_w = np.zeros((4, 3)).astype("float32")
|
|
|
|
|
sample_l.set(sample_l_w, place)
|
|
|
|
|
|
|
|
|
|
pre_out = scope.var('PreOut').get_tensor
|
|
|
|
|
|
|
|
|
|
w_out = scope.var('W_Out').get_tensor()
|
|
|
|
|
w_out.set(param_array, place)
|
|
|
|
|
sample_la = scope.var('SampleLabels').get_tensor()
|
|
|
|
|
sample_la_w = np.zeros((4, 3)).astype("float32")
|
|
|
|
|
sample_la.set(sample_la_w, place)
|
|
|
|
|
|
|
|
|
|
emaps = ['127.0.0.1:' + str(port0), '127.0.0.1:' + str(port1)]
|
|
|
|
|
table_names = ['table', 'table']
|
|
|
|
|
height_sections = [2, 3]
|
|
|
|
|
|
|
|
|
|
# create and run sgd operator
|
|
|
|
|
hsigmoid_op = Operator(
|
|
|
|
|
"hierarchical_sigmoid",
|
|
|
|
|
X='X',
|
|
|
|
|
W='W',
|
|
|
|
|
PathTable='PathTable',
|
|
|
|
|
PathCode='PathCode',
|
|
|
|
|
# create and run nce operator
|
|
|
|
|
nce_op = Operator(
|
|
|
|
|
"nce",
|
|
|
|
|
Input='Input',
|
|
|
|
|
Weight='Weight',
|
|
|
|
|
Label='Label',
|
|
|
|
|
Bias='Bias',
|
|
|
|
|
Out='Out',
|
|
|
|
|
PreOut='PreOut',
|
|
|
|
|
W_Out='W_Out',
|
|
|
|
|
Cost='Cost',
|
|
|
|
|
SampleLogits='SampleLogits',
|
|
|
|
|
SampleLabels='SampleLabels',
|
|
|
|
|
num_total_classes=5,
|
|
|
|
|
num_neg_samples=2,
|
|
|
|
|
sampler=0,
|
|
|
|
|
seed=1,
|
|
|
|
|
is_sparse=True,
|
|
|
|
|
remote_prefetch=True,
|
|
|
|
|
epmap=emaps,
|
|
|
|
|
table_names=table_names,
|
|
|
|
|
height_sections=height_sections)
|
|
|
|
|
hsigmoid_op.run(scope, place)
|
|
|
|
|
|
|
|
|
|
nce_op.run(scope, place)
|
|
|
|
|
|
|
|
|
|
# get and compare result
|
|
|
|
|
result_array = np.array(w_out)
|
|
|
|
|
self.assertEqual(list(result_array.shape), [5, 8])
|
|
|
|
|
correct = None
|
|
|
|
|
for i in range(5):
|
|
|
|
|
if i < 2:
|
|
|
|
|
correct = np.full((1, 8), i + 1).astype("float32")
|
|
|
|
|
self.assertTrue((result_array[i] == correct).all())
|
|
|
|
|
else:
|
|
|
|
|
correct = np.full((1, 8), i + 9).astype("float32")
|
|
|
|
|
self.assertTrue((result_array[i] == correct).all())
|
|
|
|
|
o_cost = np.array(cost_w)
|
|
|
|
|
o_logits = np.array(sample_l)
|
|
|
|
|
o_labels = np.array(sample_la)
|
|
|
|
|
|
|
|
|
|
def test_nce_op_remote(self):
|
|
|
|
|
os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
|
|
|
|
@ -257,7 +172,6 @@ class TestListenAndServOp(unittest.TestCase):
|
|
|
|
|
places.append(core.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
for place in places:
|
|
|
|
|
self._run_nce_op_one_pserver(place, port0)
|
|
|
|
|
self._run_nce_op_two_pserver(place, port0, port1)
|
|
|
|
|
|
|
|
|
|
# raise SIGTERM to pserver
|
|
|
|
|