parent
974183b4da
commit
42b0748ab4
@ -0,0 +1,82 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import numpy as np
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.fluid as fluid
|
||||
|
||||
|
||||
def _get_global_param_norm_(params_grads):
|
||||
res = fluid.layers.fill_constant(shape=[1], dtype="float32", value=0.0)
|
||||
for _, grad in params_grads:
|
||||
norm_var = fluid.layers.reduce_sum(
|
||||
input=fluid.layers.pow(x=grad, factor=2.0))
|
||||
fluid.layers.sums(input=[norm_var, res], out=[res])
|
||||
fluid.layers.sqrt(x=res, out=res)
|
||||
return res
|
||||
|
||||
|
||||
BATCH_SIZE = 128
|
||||
CLIP = 0.5
|
||||
prog = fluid.framework.Program()
|
||||
|
||||
with fluid.program_guard(main_program=prog):
|
||||
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
|
||||
|
||||
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
|
||||
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
|
||||
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
|
||||
|
||||
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
prog_clip = prog.clone()
|
||||
|
||||
avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
|
||||
|
||||
p_g = fluid.backward.append_backward(loss=avg_cost)
|
||||
p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)
|
||||
|
||||
with fluid.program_guard(main_program=prog):
|
||||
gloabl_norm = _get_global_param_norm_(p_g)
|
||||
|
||||
with fluid.program_guard(main_program=prog_clip):
|
||||
fluid.clip.gradient_clip_by_global_norm(clip_norm=CLIP)
|
||||
p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)
|
||||
gloabl_norm_clip = _get_global_param_norm_(p_g_clip)
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.mnist.train(), buf_size=8192),
|
||||
batch_size=BATCH_SIZE)
|
||||
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
count = 0
|
||||
for data in train_reader():
|
||||
count += 1
|
||||
if count > 5:
|
||||
break
|
||||
out, = exe.run(prog, feed=feeder.feed(data), fetch_list=[gloabl_norm])
|
||||
out_clip, = exe.run(prog_clip,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=[gloabl_norm_clip])
|
||||
|
||||
if not np.allclose(out_clip, np.minimum(out, np.array([CLIP]))):
|
||||
exit(1)
|
||||
exit(0)
|
Loading…
Reference in new issue