Merge pull request #889 from luotao1/dir

update chinese catalog
avx_docs
Tao Luo 9 years ago committed by GitHub
commit 438a4ec6d6

@ -1 +0,0 @@
./doc/howto/contribute_to_paddle_en.md

@ -0,0 +1 @@
./doc/howto/dev/contribute_to_paddle_en.md

@ -72,7 +72,7 @@ function( Sphinx_add_target target_name builder conf cache source destination )
${source}
${destination}
COMMENT "Generating sphinx documentation: ${builder}"
COMMAND ln -s ${destination}/index_*.html ${destination}/index.html
COMMAND ln -sf ${destination}/index_*.html ${destination}/index.html
)
set_property(

@ -16,7 +16,7 @@ set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.en.in"
"${CMAKE_CURRENT_SOURCE_DIR}/templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
@ -41,7 +41,7 @@ set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.cn.in"
"${CMAKE_CURRENT_SOURCE_DIR}/templates/conf.py.cn.in"
"${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY)

@ -11,4 +11,4 @@ We hope to build an active open source community both by providing feedback and
Credits
--------
We owe many thanks to `all contributors and developers <https://github.com/PaddlePaddle/Paddle/blob/develop/authors>`_ of PaddlePaddle!
We owe many thanks to `all contributors and developers <https://github.com/PaddlePaddle/Paddle/graphs/contributors>`_ of PaddlePaddle!

@ -1,5 +1,5 @@
API
===
API中文手册
============
DataProvider API
----------------

@ -1,16 +1,16 @@
简介
====
经典的线性回归任务
==================
PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍将向你展示如何利用PaddlePaddle来解决一个经典的线性回归问题。
1. 一个经典的任务
-----------------
任务简介
--------
我们展示如何用PaddlePaddle解决 `单变量的线性回归 <https://www.baidu.com/s?wd=单变量线性回归>`_ 问题。线性回归的输入是一批点 `(x, y)` ,其中 `y = wx + b + ε` 而 ε 是一个符合高斯分布的随机变量。线性回归的输出是从这批点估计出来的参数 `w``b`
一个例子是房产估值。我们假设房产的价格y是其大小x的一个线性函数那么我们可以通过收集市场上房子的大小和价格用来估计线性函数的参数w 和 b。
2. 准备数据
准备数据
-----------
假设变量 `x``y` 的真实关系为: `y = 2x + 0.3 + ε`这里展示如何使用观测数据来拟合这一线性关系。首先Python代码将随机产生2000个观测点作为线性回归的输入。下面脚本符合PaddlePaddle期待的读取数据的Python程序的模式。
@ -28,7 +28,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
x = random.random()
yield [x], [2*x+0.3]
3. 训练模型
训练模型
-----------
为了还原 `y = 2x + 0.3`,我们先从一条随机的直线 `y' = wx + b` 开始,然后利用观测数据调整 `w``b` 使得 `y'``y` 的差距不断减小,最终趋于接近。这个过程就是模型的训练过程,而 `w``b` 就是模型的参数,即我们的训练目标。
@ -79,7 +79,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
PaddlePaddle将在观测数据集上迭代训练30轮并将每轮的模型结果存放在 `./output` 路径下。从输出日志可以看到,随着轮数增加误差代价函数的输出在不断的减小,这意味着模型在训练数据上不断的改进,直到逼近真实解:` y = 2x + 0.3 `
4. 模型检验
模型检验
-----------
训练完成后,我们希望能够检验模型的好坏。一种常用的做法是用学习的模型对另外一组测试数据进行预测,评价预测的效果。在这个例子中,由于已经知道了真实答案,我们可以直接观察模型的参数是否符合预期来进行检验。
@ -106,10 +106,3 @@ PaddlePaddle将每个模型参数作为一个numpy数组单独存为一个文件
从图中可以看到,虽然 `w``b` 都使用随机值初始化,但在起初的几轮训练中它们都在快速逼近真实值,并且后续仍在不断改进,使得最终得到的模型几乎与真实模型一致。
这样我们用PaddlePaddle解决了单变量线性回归问题 包括数据输入、模型训练和最后的结果验证。
5. 推荐后续阅读
---------------
- `安装/编译 <../build_and_install/index.html>`_ PaddlePaddle的安装与编译文档。
- `快速入门 <../demo/quick_start/index.html>`_ :使用商品评论分类任务,系统性的介绍如何一步步改进,最终得到产品级的深度模型。
- `示例 <../demo/index.html>`_ :各种实用案例,涵盖图像、文本、推荐等多个领域。

@ -1,15 +1,15 @@
Basic Usage
=============
Simple Linear Regression
========================
PaddlePaddle is a deep learning platform open-sourced by Baidu. With PaddlePaddle, you can easily train a classic neural network within a couple lines of configuration, or you can build sophisticated models that provide state-of-the-art performance on difficult learning tasks like sentiment analysis, machine translation, image caption and so on.
1. A Classic Problem
---------------------
Problem Background
------------------
Now, to give you a hint of what using PaddlePaddle looks like, let's start with a fundamental learning problem - `simple linear regression <https://en.wikipedia.org/wiki/Simple_linear_regression>`_: you have observed a set of two-dimensional data points of ``X`` and ``Y``, where ``X`` is an explanatory variable and ``Y`` is corresponding dependent variable, and you want to recover the underlying correlation between ``X`` and ``Y``. Linear regression can be used in many practical scenarios. For example, ``X`` can be a variable about house size, and ``Y`` a variable about house price. You can build a model that captures relationship between them by observing real estate markets.
2. Prepare the Data
--------------------
Prepare the Data
-----------------
Suppose the true relationship can be characterized as ``Y = 2X + 0.3``, let's see how to recover this pattern only from observed data. Here is a piece of python code that feeds synthetic data to PaddlePaddle. The code is pretty self-explanatory, the only extra thing you need to add for PaddlePaddle is a definition of input data types.
@ -26,8 +26,8 @@ Suppose the true relationship can be characterized as ``Y = 2X + 0.3``, let's se
x = random.random()
yield [x], [2*x+0.3]
3. Train a NeuralNetwork
-------------------------
Train a NeuralNetwork
----------------------
To recover this relationship between ``X`` and ``Y``, we use a neural network with one layer of linear activation units and a square error cost layer. Don't worry if you are not familiar with these terminologies, it's just saying that we are starting from a random line ``Y' = wX + b`` , then we gradually adapt ``w`` and ``b`` to minimize the difference between ``Y'`` and ``Y``. Here is what it looks like in PaddlePaddle:
@ -73,8 +73,8 @@ Now that everything is ready, you can train the network with a simple command li
This means that PaddlePaddle will train this network on the synthectic dataset for 30 passes, and save all the models under path ``./output``. You will see from the messages printed out during training phase that the model cost is decreasing as time goes by, which indicates we are getting a closer guess.
4. Evaluate the Model
-----------------------
Evaluate the Model
-------------------
Usually, a different dataset that left out during training phase should be used to evalute the models. However, we are lucky enough to know the real answer: ``w=2, b=0.3``, thus a better option is to check out model parameters directly.

@ -1,5 +1,5 @@
编译与安装
========================
==========
安装
++++
@ -24,4 +24,4 @@ PaddlePaddle提供数个预编译的二进制来进行安装包括Docker镜
.. toctree::
:maxdepth: 1
cmake/build_from_source_cn.rst
cmake/build_from_source_cn.rst

@ -1,4 +1,4 @@
GET STARTED
新手入门
============
.. toctree::

@ -1,3 +0,0 @@
TBD
目前正在书写中。敬请期待。

@ -1,4 +0,0 @@
TBD
###
目前正在书写中。敬请期待。

@ -1,10 +0,0 @@
How to Configure Deep Models
============================
.. toctree::
:maxdepth: 1
rnn/recurrent_group_cn.md
rnn/hierarchical_layer_cn.rst
rnn/hrnn_rnn_api_compare_cn.rst
rnn/hrnn_demo_cn.rst

@ -1,7 +0,0 @@
How to Configure Deep Models
============================
.. toctree::
:maxdepth: 1
rnn/rnn_en.rst

@ -1,7 +0,0 @@
.. _algo_hrnn_demo:
#################
双层RNN的使用示例
#################
TBD

@ -0,0 +1,9 @@
RNN相关模型
===========
.. toctree::
:maxdepth: 1
recurrent_group_cn.md
hierarchical_layer_cn.rst
hrnn_rnn_api_compare_cn.rst

@ -0,0 +1,7 @@
RNN Models
==========
.. toctree::
:maxdepth: 1
rnn_config_en.rst

Before

Width:  |  Height:  |  Size: 50 KiB

After

Width:  |  Height:  |  Size: 50 KiB

@ -1,4 +1,4 @@
# How to Contribute Code
# Contribute Code
We sincerely appreciate your contributions. You can use fork and pull request
workflow to merge your code.

@ -1,6 +1,6 @@
=======================
How to Write New Layers
=======================
================
Write New Layers
================
This tutorial will guide you to write customized layers in PaddlePaddle. We will utilize fully connected layer as an example to guide you through the following steps for writing a new layer.

@ -1,6 +1,6 @@
###############################
如何贡献/修改PaddlePaddle的文档
###############################
##################
如何贡献/修改文档
##################
PaddlePaddle的文档包括英文文档 ``doc`` 和中文文档 ``doc_cn`` 两个部分。文档都是通过 `cmake`_ 驱动 `sphinx`_ 编译生成,生成后的文档分别存储在编译目录的 ``doc````doc_cn`` 两个子目录下。
@ -51,4 +51,4 @@ TBD
.. _cmake: https://cmake.org/
.. _sphinx: http://www.sphinx-doc.org/en/1.4.8/
.. _sphinx: http://www.sphinx-doc.org/en/1.4.8/

@ -1,27 +1,37 @@
HOW TO
=======
进阶指南
========
Usage
-------
使用说明
--------
.. toctree::
:maxdepth: 1
concepts/use_concepts_cn.rst
cluster/k8s/paddle_on_k8s_cn.md
cluster/k8s/distributed_training_on_k8s_cn.md
usage/concepts/use_concepts_cn.rst
usage/cluster/k8s/k8s_cn.md
usage/cluster/k8s/k8s_distributed_cn.md
Development
------------
开发标准
--------
.. toctree::
:maxdepth: 1
write_docs/index_cn.rst
deep_model/index_cn.rst
dev/write_docs_cn.rst
dev/contribute_to_paddle_cn.md
Optimization
-------------
模型配置
--------
.. toctree::
:maxdepth: 1
deep_model/rnn/index_cn.rst
性能优化
--------
.. toctree::
:maxdepth: 1
optimization/gpu_profiling_cn.rst

@ -7,9 +7,8 @@ Usage
.. toctree::
:maxdepth: 1
cmd_parameter/index_en.md
deep_model/index_en.rst
cluster/cluster_train_en.md
usage/cmd_parameter/index_en.md
usage/cluster/cluster_train_en.md
Development
------------
@ -17,8 +16,16 @@ Development
.. toctree::
:maxdepth: 1
new_layer/index_en.rst
contribute_to_paddle_en.md
dev/new_layer_en.rst
dev/contribute_to_paddle_en.md
Configuration
-------------
.. toctree::
:maxdepth: 1
deep_model/rnn/index_en.rst
Optimization
-------------
@ -26,4 +33,4 @@ Optimization
.. toctree::
:maxdepth: 1
optimization/index_en.rst
optimization/gpu_profiling_en.rst

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save