parent
c83dd9b4c2
commit
4466f0bec8
@ -0,0 +1,192 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "mkldnn.hpp"
|
||||
#include "paddle/fluid/operators/activation_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using paddle::framework::Tensor;
|
||||
using paddle::platform::MKLDNNDeviceContext;
|
||||
|
||||
namespace {
|
||||
template <typename T, typename ExecContext>
|
||||
void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
|
||||
const T alpha = 0, const T beta = 0) {
|
||||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
||||
"It must use CPUPlace.");
|
||||
|
||||
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
||||
const auto &mkldnn_engine = dev_ctx.GetEngine();
|
||||
|
||||
// get buffers
|
||||
const auto *src = ctx.template Input<Tensor>("X");
|
||||
const auto *src_data = src->template data<T>();
|
||||
|
||||
auto *dst = ctx.template Output<Tensor>("Out");
|
||||
const T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
// get memory dim
|
||||
PADDLE_ENFORCE(src->dims().size() == 4,
|
||||
"Input dim must be with 4, i.e. NCHW");
|
||||
std::vector<int> src_tz = framework::vectorize2int(src->dims());
|
||||
|
||||
// create memory description
|
||||
// TODO(kbinias-intel): support more formats
|
||||
auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
|
||||
mkldnn::memory::format::nchw);
|
||||
|
||||
// create memory primitives
|
||||
auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)src_data);
|
||||
auto dst_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)dst_data);
|
||||
|
||||
auto forward_desc = mkldnn::eltwise_forward::desc(
|
||||
mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);
|
||||
|
||||
// save prim desc into global device context to be referred in backward path
|
||||
const std::string key = ctx.op().Output("Out");
|
||||
const std::string key_eltwise_pd = key + "@eltwise_pd";
|
||||
auto forward_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
|
||||
forward_desc, mkldnn_engine);
|
||||
dev_ctx.SetBlob(key_eltwise_pd, forward_pd);
|
||||
|
||||
auto eltwise = mkldnn::eltwise_forward(*forward_pd, src_memory, dst_memory);
|
||||
|
||||
// push primitive to stream and wait until it's executed
|
||||
std::vector<mkldnn::primitive> pipeline = {eltwise};
|
||||
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
||||
}
|
||||
|
||||
template <typename T, typename ExecContext>
|
||||
void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
|
||||
const T alpha = 0, const T beta = 0) {
|
||||
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
||||
const auto &mkldnn_engine = dev_ctx.GetEngine();
|
||||
|
||||
// get buffers
|
||||
const auto *x = ctx.template Input<Tensor>("X");
|
||||
const auto *src = x->template data<T>();
|
||||
|
||||
auto *dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
|
||||
const auto *diff_dst = dout->template data<T>();
|
||||
|
||||
auto *dx =
|
||||
ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
const T *diff_src = dx->template mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
// get memory dim
|
||||
std::vector<int> src_tz = framework::vectorize2int(x->dims());
|
||||
|
||||
// create memory description
|
||||
auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
|
||||
mkldnn::memory::format::nchw);
|
||||
|
||||
// create memory primitives
|
||||
auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)src);
|
||||
auto diff_src_memory =
|
||||
mkldnn::memory({data_md, mkldnn_engine}, (void *)diff_src);
|
||||
auto diff_dst_memory =
|
||||
mkldnn::memory({data_md, mkldnn_engine}, (void *)diff_dst);
|
||||
|
||||
auto backward_desc =
|
||||
mkldnn::eltwise_backward::desc(algorithm, data_md, data_md, alpha, beta);
|
||||
|
||||
// retrieve eltwise primitive desc from device context
|
||||
const std::string key = ctx.op().Input("Out");
|
||||
const std::string key_eltwise_pd = key + "@eltwise_pd";
|
||||
const std::shared_ptr<void> forward_pd = dev_ctx.GetBlob(key_eltwise_pd);
|
||||
PADDLE_ENFORCE(forward_pd != nullptr,
|
||||
"Fail to find eltwise_pd in device context");
|
||||
auto *p_forward_pd =
|
||||
static_cast<mkldnn::eltwise_forward::primitive_desc *>(forward_pd.get());
|
||||
|
||||
auto eltwise_bwd_prim_desc = mkldnn::eltwise_backward::primitive_desc(
|
||||
backward_desc, mkldnn_engine, *p_forward_pd);
|
||||
|
||||
auto eltwise_bwd = mkldnn::eltwise_backward(eltwise_bwd_prim_desc, src_memory,
|
||||
diff_dst_memory, diff_src_memory);
|
||||
|
||||
// push primitive to stream and wait until it's executed
|
||||
std::vector<mkldnn::primitive> pipeline = {eltwise_bwd};
|
||||
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
template <typename T, mkldnn::algorithm algorithm>
|
||||
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
|
||||
template <typename ExecContext>
|
||||
void operator()(const ExecContext &ctx) const {
|
||||
eltwise_forward<T>(ctx, algorithm);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, mkldnn::algorithm algorithm>
|
||||
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
|
||||
template <typename ExecContext>
|
||||
void operator()(const ExecContext &ctx) const {
|
||||
eltwise_grad<T>(ctx, algorithm);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
using ReluMkldnnFunctor =
|
||||
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;
|
||||
|
||||
template <typename T>
|
||||
using TanhMkldnnFunctor =
|
||||
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;
|
||||
|
||||
template <typename T>
|
||||
using SqrtMkldnnFunctor =
|
||||
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;
|
||||
|
||||
template <typename T>
|
||||
using AbsMkldnnFunctor =
|
||||
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;
|
||||
|
||||
template <typename T>
|
||||
using ReluMkldnnGradFunctor =
|
||||
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;
|
||||
|
||||
template <typename T>
|
||||
using TanhMkldnnGradFunctor =
|
||||
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;
|
||||
|
||||
template <typename T>
|
||||
using SqrtMkldnnGradFunctor =
|
||||
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;
|
||||
|
||||
template <typename T>
|
||||
using AbsMkldnnGradFunctor =
|
||||
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
|
||||
REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace, \
|
||||
ops::MKLDNNActivationKernel<ops::functor<float>>); \
|
||||
REGISTER_OP_KERNEL( \
|
||||
act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace, \
|
||||
ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);
|
||||
|
||||
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro) \
|
||||
__macro(relu, ReluMkldnnFunctor, ReluMkldnnGradFunctor) \
|
||||
__macro(tanh, TanhMkldnnFunctor, TanhMkldnnGradFunctor) \
|
||||
__macro(sqrt, SqrtMkldnnFunctor, SqrtMkldnnGradFunctor) \
|
||||
__macro(abs, AbsMkldnnFunctor, AbsMkldnnGradFunctor);
|
||||
|
||||
FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);
|
Loading…
Reference in new issue