commit
44e3a357c0
@ -0,0 +1,94 @@
|
||||
# edit-mode: -*- python -*-
|
||||
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This configuration is a demonstration of how to implement the stacked LSTM
|
||||
with residual connections, i.e. an LSTM layer takes the sum of the hidden states
|
||||
and inputs of the previous LSTM layer instead of only the hidden states.
|
||||
This architecture is from:
|
||||
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
|
||||
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
|
||||
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
|
||||
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
|
||||
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
|
||||
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean. 2016.
|
||||
Google's Neural Machine Translation System: Bridging the Gap between Human and
|
||||
Machine Translation. In arXiv https://arxiv.org/pdf/1609.08144v2.pdf
|
||||
Different from the architecture described in the paper, we use a stack single
|
||||
direction LSTM layers as the first layer instead of bi-directional LSTM. Also,
|
||||
since this is a demo code, to reduce computation time, we stacked 4 layers
|
||||
instead of 8 layers.
|
||||
"""
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
dict_file = "./data/dict.txt"
|
||||
word_dict = dict()
|
||||
with open(dict_file, 'r') as f:
|
||||
for i, line in enumerate(f):
|
||||
w = line.strip().split()[0]
|
||||
word_dict[w] = i
|
||||
|
||||
is_predict = get_config_arg('is_predict', bool, False)
|
||||
trn = 'data/train.list' if not is_predict else None
|
||||
tst = 'data/test.list' if not is_predict else 'data/pred.list'
|
||||
process = 'process' if not is_predict else 'process_predict'
|
||||
define_py_data_sources2(train_list=trn,
|
||||
test_list=tst,
|
||||
module="dataprovider_emb",
|
||||
obj=process,
|
||||
args={"dictionary": word_dict})
|
||||
|
||||
batch_size = 128 if not is_predict else 1
|
||||
settings(
|
||||
batch_size=batch_size,
|
||||
learning_rate=2e-3,
|
||||
learning_method=AdamOptimizer(),
|
||||
regularization=L2Regularization(8e-4),
|
||||
gradient_clipping_threshold=25
|
||||
)
|
||||
|
||||
bias_attr = ParamAttr(initial_std=0.,l2_rate=0.)
|
||||
|
||||
data = data_layer(name="word", size=len(word_dict))
|
||||
emb = embedding_layer(input=data, size=128)
|
||||
lstm = simple_lstm(input=emb, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1))
|
||||
|
||||
previous_input, previous_hidden_state = emb, lstm
|
||||
|
||||
for i in range(3):
|
||||
# The input to the current layer is the sum of the hidden state
|
||||
# and input of the previous layer.
|
||||
current_input = addto_layer(input=[previous_input, previous_hidden_state])
|
||||
hidden_state = simple_lstm(input=current_input, size=128,
|
||||
lstm_cell_attr=ExtraAttr(drop_rate=0.1))
|
||||
previous_input, previous_hidden_state = current_input, hidden_state
|
||||
|
||||
lstm = previous_hidden_state
|
||||
|
||||
lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling())
|
||||
output = fc_layer(input=lstm_last, size=2,
|
||||
bias_attr=bias_attr,
|
||||
act=SoftmaxActivation())
|
||||
|
||||
|
||||
if is_predict:
|
||||
maxid = maxid_layer(output)
|
||||
outputs([maxid, output])
|
||||
else:
|
||||
label = data_layer(name="label", size=2)
|
||||
cls = classification_cost(input=output, label=label)
|
||||
outputs(cls)
|
Loading…
Reference in new issue