Merge pull request #7874 from Xreki/core_add_inference_unittest
Change the inference example to an unittestemailweixu-patch-1
commit
455639b205
@ -1,104 +0,0 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <time.h>
|
||||
#include <iostream>
|
||||
#include "gflags/gflags.h"
|
||||
#include "paddle/framework/init.h"
|
||||
#include "paddle/framework/lod_tensor.h"
|
||||
#include "paddle/inference/io.h"
|
||||
|
||||
DEFINE_string(dirname, "", "Directory of the inference model.");
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (FLAGS_dirname.empty()) {
|
||||
// Example:
|
||||
// ./example --dirname=recognize_digits_mlp.inference.model
|
||||
std::cout << "Usage: ./example --dirname=path/to/your/model" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// 1. Define place, executor, scope
|
||||
auto place = paddle::platform::CPUPlace();
|
||||
paddle::framework::InitDevices();
|
||||
auto* executor = new paddle::framework::Executor(place);
|
||||
auto* scope = new paddle::framework::Scope();
|
||||
|
||||
std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
|
||||
std::string dirname = FLAGS_dirname;
|
||||
|
||||
// 2. Initialize the inference program
|
||||
auto inference_program = paddle::inference::Load(*executor, *scope, dirname);
|
||||
|
||||
// 3. Optional: perform optimization on the inference_program
|
||||
|
||||
// 4. Get the feed_target_names and fetch_target_names
|
||||
const std::vector<std::string>& feed_target_names =
|
||||
inference_program->GetFeedTargetNames();
|
||||
const std::vector<std::string>& fetch_target_names =
|
||||
inference_program->GetFetchTargetNames();
|
||||
|
||||
// 5. Generate input
|
||||
paddle::framework::LoDTensor input;
|
||||
srand(time(0));
|
||||
float* input_ptr =
|
||||
input.mutable_data<float>({1, 784}, paddle::platform::CPUPlace());
|
||||
for (int i = 0; i < 784; ++i) {
|
||||
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
|
||||
}
|
||||
|
||||
std::vector<paddle::framework::LoDTensor> feeds;
|
||||
feeds.push_back(input);
|
||||
std::vector<paddle::framework::LoDTensor> fetchs;
|
||||
|
||||
// Set up maps for feed and fetch targets
|
||||
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
|
||||
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
|
||||
|
||||
// set_feed_variable
|
||||
for (size_t i = 0; i < feed_target_names.size(); ++i) {
|
||||
feed_targets[feed_target_names[i]] = &feeds[i];
|
||||
}
|
||||
|
||||
// get_fetch_variable
|
||||
fetchs.resize(fetch_target_names.size());
|
||||
for (size_t i = 0; i < fetch_target_names.size(); ++i) {
|
||||
fetch_targets[fetch_target_names[i]] = &fetchs[i];
|
||||
}
|
||||
|
||||
// Run the inference program
|
||||
executor->Run(*inference_program, scope, feed_targets, fetch_targets);
|
||||
|
||||
// Get outputs
|
||||
for (size_t i = 0; i < fetchs.size(); ++i) {
|
||||
auto dims_i = fetchs[i].dims();
|
||||
std::cout << "dims_i:";
|
||||
for (int j = 0; j < dims_i.size(); ++j) {
|
||||
std::cout << " " << dims_i[j];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "result:";
|
||||
float* output_ptr = fetchs[i].data<float>();
|
||||
for (int j = 0; j < paddle::framework::product(dims_i); ++j) {
|
||||
std::cout << " " << output_ptr[j];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
delete scope;
|
||||
delete executor;
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,7 @@
|
||||
set(PYTHON_TESTS_DIR ${PADDLE_SOURCE_DIR}/python/paddle/v2/fluid/tests)
|
||||
cc_test(test_inference_recognize_digits_mlp
|
||||
SRCS test_inference_recognize_digits.cc
|
||||
DEPS ARCHIVE_START paddle_fluid ARCHIVE_END
|
||||
ARGS --dirname=${PYTHON_TESTS_DIR}/book/recognize_digits_mlp.inference.model)
|
||||
set_tests_properties(test_inference_recognize_digits_mlp
|
||||
PROPERTIES DEPENDS test_recognize_digits_mlp_cpu)
|
@ -0,0 +1,113 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include <time.h>
|
||||
#include <sstream>
|
||||
#include "gflags/gflags.h"
|
||||
#include "paddle/framework/lod_tensor.h"
|
||||
#include "paddle/inference/io.h"
|
||||
|
||||
DEFINE_string(dirname, "", "Directory of the inference model.");
|
||||
|
||||
template <typename Place, typename T>
|
||||
void TestInference(const std::string& dirname,
|
||||
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
|
||||
std::vector<paddle::framework::LoDTensor*>& cpu_fetchs) {
|
||||
// 1. Define place, executor and scope
|
||||
auto place = Place();
|
||||
auto executor = paddle::framework::Executor(place);
|
||||
auto* scope = new paddle::framework::Scope();
|
||||
|
||||
// 2. Initialize the inference_program and load all parameters from file
|
||||
auto inference_program = paddle::inference::Load(executor, *scope, dirname);
|
||||
|
||||
// 3. Get the feed_target_names and fetch_target_names
|
||||
const std::vector<std::string>& feed_target_names =
|
||||
inference_program->GetFeedTargetNames();
|
||||
const std::vector<std::string>& fetch_target_names =
|
||||
inference_program->GetFetchTargetNames();
|
||||
|
||||
// 4. Prepare inputs: set up maps for feed targets
|
||||
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
|
||||
for (size_t i = 0; i < feed_target_names.size(); ++i) {
|
||||
// Please make sure that cpu_feeds[i] is right for feed_target_names[i]
|
||||
feed_targets[feed_target_names[i]] = cpu_feeds[i];
|
||||
}
|
||||
|
||||
// 5. Define Tensor to get the outputs: set up maps for fetch targets
|
||||
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
|
||||
for (size_t i = 0; i < fetch_target_names.size(); ++i) {
|
||||
fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
|
||||
}
|
||||
|
||||
// 6. Run the inference program
|
||||
executor.Run(*inference_program, scope, feed_targets, fetch_targets);
|
||||
|
||||
delete scope;
|
||||
}
|
||||
|
||||
TEST(inference, recognize_digits) {
|
||||
if (FLAGS_dirname.empty()) {
|
||||
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
|
||||
}
|
||||
|
||||
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
|
||||
std::string dirname = FLAGS_dirname;
|
||||
|
||||
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
|
||||
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
|
||||
|
||||
paddle::framework::LoDTensor input;
|
||||
srand(time(0));
|
||||
float* input_ptr =
|
||||
input.mutable_data<float>({1, 28, 28}, paddle::platform::CPUPlace());
|
||||
for (int i = 0; i < 784; ++i) {
|
||||
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
|
||||
}
|
||||
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
|
||||
cpu_feeds.push_back(&input);
|
||||
|
||||
paddle::framework::LoDTensor output1;
|
||||
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
|
||||
cpu_fetchs1.push_back(&output1);
|
||||
|
||||
// Run inference on CPU
|
||||
TestInference<paddle::platform::CPUPlace, float>(
|
||||
dirname, cpu_feeds, cpu_fetchs1);
|
||||
LOG(INFO) << output1.dims();
|
||||
|
||||
#ifdef PADDLE_WITH_CUDA
|
||||
paddle::framework::LoDTensor output2;
|
||||
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
|
||||
cpu_fetchs2.push_back(&output2);
|
||||
|
||||
// Run inference on CUDA GPU
|
||||
TestInference<paddle::platform::CUDAPlace, float>(
|
||||
dirname, cpu_feeds, cpu_fetchs2);
|
||||
LOG(INFO) << output2.dims();
|
||||
|
||||
EXPECT_EQ(output1.dims(), output2.dims());
|
||||
EXPECT_EQ(output1.numel(), output2.numel());
|
||||
|
||||
float err = 1E-3;
|
||||
int count = 0;
|
||||
for (int64_t i = 0; i < output1.numel(); ++i) {
|
||||
if (fabs(output1.data<float>()[i] - output2.data<float>()[i]) > err) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
EXPECT_EQ(count, 0) << "There are " << count << " different elements.";
|
||||
#endif
|
||||
}
|
Loading…
Reference in new issue