add prediction demo and script on windows (#21248)

revert-21172-masked_select_api
silingtong123 6 years ago committed by liuwei1031
parent 4b429c190d
commit 45c1e7bb7b

@ -69,6 +69,12 @@ if(WITH_GPU)
endif(NOT WIN32)
endif()
if (USE_TENSORRT AND WITH_GPU)
set(TENSORRT_ROOT ${PADDLE_LIB_THIRD_PARTY_PATH}tensorrt)
set(TENSORRT_INCLUDE_DIR ${TENSORRT_ROOT}/include)
set(TENSORRT_LIB_DIR ${TENSORRT_ROOT}/lib)
endif()
if (NOT WIN32)
if (USE_TENSORRT AND WITH_GPU)
include_directories("${TENSORRT_INCLUDE_DIR}")
@ -108,9 +114,12 @@ if(WITH_MKL)
endif(WIN32)
endif()
else()
set(MATH_LIB ${PADDLE_LIB_THIRD_PARTY_PATH}openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
if(WIN32)
set(MATH_DLL ${PADDLE_LIB_THIRD_PARTY_PATH}openblas/lib/openblas${CMAKE_SHARED_LIBRARY_SUFFIX})
# Note: fix the openblas static library not work on windows, and change the static library to import library.
set(MATH_LIB ${PADDLE_LIB_THIRD_PARTY_PATH}openblas/lib/openblas${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(MATH_LIB ${PADDLE_LIB_THIRD_PARTY_PATH}openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
endif()

File diff suppressed because it is too large Load Diff

@ -0,0 +1,35 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tarfile, os
import sys
def untar(fname, dirs):
"""
extract the tar.gz file
:param fname: the name of tar.gz file
:param dirs: the path of decompressed file
:return: bool
"""
try:
t = tarfile.open(name=fname, mode='r:gz')
t.extractall(path=dirs)
return True
except Exception as e:
print(e)
return False
untar(sys.argv[1], sys.argv[2])

@ -0,0 +1,92 @@
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "paddle/include/paddle_inference_api.h"
DEFINE_string(modeldir, "", "Directory of the inference model.");
DEFINE_bool(use_gpu, false, "Whether use gpu.");
namespace paddle {
namespace demo {
void RunAnalysis() {
// 1. create AnalysisConfig
AnalysisConfig config;
if (FLAGS_modeldir.empty()) {
LOG(INFO) << "Usage: path\\mobilenet --modeldir=path/to/your/model";
exit(1);
}
// CreateConfig(&config);
if (FLAGS_use_gpu) {
config.EnableUseGpu(100, 0);
}
config.SetModel(FLAGS_modeldir + "/__model__",
FLAGS_modeldir + "/__params__");
// use ZeroCopyTensor, Must be set to false
config.SwitchUseFeedFetchOps(false);
// 2. create predictor, prepare input data
std::unique_ptr<PaddlePredictor> predictor = CreatePaddlePredictor(config);
int batch_size = 1;
int channels = 3;
int height = 300;
int width = 300;
int nums = batch_size * channels * height * width;
float* input = new float[nums];
for (int i = 0; i < nums; ++i) input[i] = 0;
// 3. create input tensor, use ZeroCopyTensor
auto input_names = predictor->GetInputNames();
auto input_t = predictor->GetInputTensor(input_names[0]);
input_t->Reshape({batch_size, channels, height, width});
input_t->copy_from_cpu(input);
// 4. run predictor
predictor->ZeroCopyRun();
// 5. get out put
std::vector<float> out_data;
auto output_names = predictor->GetOutputNames();
auto output_t = predictor->GetOutputTensor(output_names[0]);
std::vector<int> output_shape = output_t->shape();
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
delete[] input;
}
} // namespace demo
} // namespace paddle
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
paddle::demo::RunAnalysis();
std::cout << "=========================Runs successfully===================="
<< std::endl;
return 0;
}
Loading…
Cancel
Save