parent
4b5986bb77
commit
45d0259a67
@ -0,0 +1,90 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def fc_refer(matrix, with_bias):
|
||||
in_n, in_c, in_h, in_w = matrix.input.shape
|
||||
w_i, w_o = matrix.weights.shape
|
||||
|
||||
x_data = np.reshape(matrix.input, [in_n, in_c * in_h * in_w])
|
||||
w_data = np.reshape(matrix.weights, [w_i, w_o])
|
||||
b_data = np.reshape(matrix.bias, [1, w_o])
|
||||
result = None
|
||||
|
||||
if with_bias:
|
||||
result = np.dot(x_data, w_data) + b_data
|
||||
else:
|
||||
result = np.dot(x_data, w_data)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class MatrixGenerate:
|
||||
def __init__(self, mb, ic, oc, h, w):
|
||||
self.input = np.random.random((mb, ic, h, w)).astype("float32")
|
||||
self.weights = np.random.random((ic * h * w, oc)).astype("float32")
|
||||
self.bias = np.random.random((1, oc)).astype("float32")
|
||||
|
||||
|
||||
class TestFCOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "fc"
|
||||
self.matrix = MatrixGenerate(1, 10, 15, 3, 3)
|
||||
|
||||
self.with_bias = True
|
||||
if self.with_bias:
|
||||
self.inputs = {
|
||||
'Input': self.matrix.input,
|
||||
'W': self.matrix.weights,
|
||||
'Bias': self.matrix.bias
|
||||
}
|
||||
else:
|
||||
self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}
|
||||
|
||||
self.attrs = {'use_mkldnn': False}
|
||||
|
||||
self.outputs = {'Out': fc_refer(self.matrix, self.with_bias)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestFCOpBiasBoth(TestFCOp):
|
||||
def init_shapes(self, mb, ic, oc, h, w):
|
||||
for with_bias in {True, False}:
|
||||
self.with_bias = with_bias
|
||||
self.matrix = MatrixGenerate(mb, ic, oc, h, w)
|
||||
|
||||
|
||||
class TestFCOp1(TestFCOpBiasBoth):
|
||||
def init_op_type(self):
|
||||
self.init_shapes(2, 8, 10, 1, 1)
|
||||
|
||||
|
||||
class TestFCOp2(TestFCOpBiasBoth):
|
||||
def init_op_type(self):
|
||||
self.init_shapes(4, 5, 6, 2, 2)
|
||||
|
||||
|
||||
class TestFCOp4(TestFCOpBiasBoth):
|
||||
def init_op_type(self):
|
||||
self.init_shapes(1, 32, 64, 3, 3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue