add Mobilienet ssd int8 analyzer tester ()

* add pascalvoc preprocess script and mobilenet-ssd analyzer_tester, wait 17737

* change converting local dataset to downloading and converting tarfile
test=develop

* change the test data_path
test=develop

* change copyright (c) 2016 to copyright (c) 2019
test=develop
revert-18229-add_multi_gpu_install_check
lidanqing 6 years ago committed by Tao Luo
parent 8cf25c4310
commit 466254151a

@ -23,11 +23,11 @@ function(inference_analysis_api_test target install_dir filename)
ARGS --infer_model=${install_dir}/model --infer_data=${install_dir}/data.txt)
endfunction()
function(inference_analysis_api_int8_test target model_dir data_dir filename)
function(inference_analysis_api_int8_test target model_dir data_path filename)
inference_analysis_test(${target} SRCS ${filename}
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} benchmark
ARGS --infer_model=${model_dir}/model
--infer_data=${data_dir}/data.bin
--infer_data=${data_path}
--warmup_batch_size=100
--batch_size=50
--paddle_num_threads=${CPU_NUM_THREADS_ON_CI}
@ -159,55 +159,70 @@ if(WITH_MKLDNN)
if (NOT EXISTS ${INT8_DATA_DIR})
inference_download_and_uncompress(${INT8_DATA_DIR} "${INFERENCE_URL}/int8" "imagenet_val_100_tail.tar.gz")
endif()
if (NOT EXISTS ${INT8_DATA_DIR}/pascalvoc_data.bin)
inference_download_and_uncompress(${INT8_DATA_DIR} "${INFERENCE_URL}/int8" "pascalvoc_val_200_head.tar.gz")
endif()
set(IMAGENET_DATA_PATH "${INT8_DATA_DIR}/data.bin")
set(PASCALVOC_DATA_PATH "${INT8_DATA_DIR}/pascalvoc_data.bin")
#resnet50 int8
set(INT8_RESNET50_MODEL_DIR "${INT8_DATA_DIR}/resnet50")
if (NOT EXISTS ${INT8_RESNET50_MODEL_DIR})
inference_download_and_uncompress(${INT8_RESNET50_MODEL_DIR} "${INFERENCE_URL}/int8" "resnet50_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_resnet50 ${INT8_RESNET50_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_resnet50 ${INT8_RESNET50_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#mobilenet int8
set(INT8_MOBILENET_MODEL_DIR "${INT8_DATA_DIR}/mobilenet")
if (NOT EXISTS ${INT8_MOBILENET_MODEL_DIR})
inference_download_and_uncompress(${INT8_MOBILENET_MODEL_DIR} "${INFERENCE_URL}/int8" "mobilenetv1_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_mobilenet ${INT8_MOBILENET_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_mobilenet ${INT8_MOBILENET_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#mobilenetv2 int8
set(INT8_MOBILENETV2_MODEL_DIR "${INT8_DATA_DIR}/mobilenetv2")
if (NOT EXISTS ${INT8_MOBILENETV2_MODEL_DIR})
inference_download_and_uncompress(${INT8_MOBILENETV2_MODEL_DIR} "${INFERENCE_URL}/int8" "mobilenet_v2_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_mobilenetv2 ${INT8_MOBILENETV2_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_mobilenetv2 ${INT8_MOBILENETV2_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#resnet101 int8
set(INT8_RESNET101_MODEL_DIR "${INT8_DATA_DIR}/resnet101")
if (NOT EXISTS ${INT8_RESNET101_MODEL_DIR})
inference_download_and_uncompress(${INT8_RESNET101_MODEL_DIR} "${INFERENCE_URL}/int8" "Res101_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_resnet101 ${INT8_RESNET101_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_resnet101 ${INT8_RESNET101_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#vgg16 int8
set(INT8_VGG16_MODEL_DIR "${INT8_DATA_DIR}/vgg16")
if (NOT EXISTS ${INT8_VGG16_MODEL_DIR})
inference_download_and_uncompress(${INT8_VGG16_MODEL_DIR} "${INFERENCE_URL}/int8" "VGG16_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_vgg16 ${INT8_VGG16_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_vgg16 ${INT8_VGG16_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#vgg19 int8
set(INT8_VGG19_MODEL_DIR "${INT8_DATA_DIR}/vgg19")
if (NOT EXISTS ${INT8_VGG19_MODEL_DIR})
inference_download_and_uncompress(${INT8_VGG19_MODEL_DIR} "${INFERENCE_URL}/int8" "VGG19_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_vgg19 ${INT8_VGG19_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc)
inference_analysis_api_int8_test(test_analyzer_int8_vgg19 ${INT8_VGG19_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc)
#googlenet int8
set(INT8_GOOGLENET_MODEL_DIR "${INT8_DATA_DIR}/googlenet")
if (NOT EXISTS ${INT8_GOOGLENET_MODEL_DIR})
inference_download_and_uncompress(${INT8_GOOGLENET_MODEL_DIR} "${INFERENCE_URL}/int8" "GoogleNet_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_googlenet ${INT8_GOOGLENET_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc SERIAL)
inference_analysis_api_int8_test(test_analyzer_int8_googlenet ${INT8_GOOGLENET_MODEL_DIR} ${IMAGENET_DATA_PATH} analyzer_int8_image_classification_tester.cc SERIAL)
#mobilenet-ssd int8 model
set(INT8_MOBILENET_SSD_MODEL_DIR "${INT8_DATA_DIR}/mobilenet-ssd")
if (NOT EXISTS ${INT8_MOBILENET_SSD_MODEL_DIR})
inference_download_and_uncompress(${INT8_MOBILENET_SSD_MODEL_DIR} "${INFERENCE_URL}/int8" "mobilenet_ssd_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_mobilenet_ssd ${INT8_MOBILENET_SSD_MODEL_DIR} ${PASCALVOC_DATA_PATH} analyzer_int8_object_detection_tester.cc)
endif()
# bert, max_len=20, embedding_dim=128

@ -0,0 +1,187 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import xml.etree.ElementTree as ET
from PIL import Image
import numpy as np
import os
import sys
from paddle.dataset.common import download
import tarfile
import StringIO
import hashlib
import tarfile
DATA_URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar"
DATA_DIR = os.path.expanduser("~/.cache/paddle/dataset/pascalvoc/")
TAR_FILE = "VOCtest_06-Nov-2007.tar"
TAR_PATH = os.path.join(DATA_DIR, TAR_FILE)
RESIZE_H = 300
RESIZE_W = 300
mean_value = [127.5, 127.5, 127.5]
ap_version = '11point'
DATA_OUT = 'pascalvoc_full.bin'
DATA_OUT_PATH = os.path.join(DATA_DIR, DATA_OUT)
BIN_TARGETHASH = "f6546cadc42f5ff13178b84ed29b740b"
TAR_TARGETHASH = "b6e924de25625d8de591ea690078ad9f"
TEST_LIST_KEY = "VOCdevkit/VOC2007/ImageSets/Main/test.txt"
BIN_FULLSIZE = 5348678856
def preprocess(img):
img_width, img_height = img.size
img = img.resize((RESIZE_W, RESIZE_H), Image.ANTIALIAS)
img = np.array(img)
# HWC to CHW
if len(img.shape) == 3:
img = np.swapaxes(img, 1, 2)
img = np.swapaxes(img, 1, 0)
# RBG to BGR
img = img[[2, 1, 0], :, :]
img = img.astype('float32')
img_mean = np.array(mean_value)[:, np.newaxis, np.newaxis].astype('float32')
img -= img_mean
img = img * 0.007843
return img
def print_processbar(done_percentage):
done_filled = done_percentage * '='
empty_filled = (100 - done_percentage) * ' '
sys.stdout.write("\r[%s%s]%d%%" %
(done_filled, empty_filled, done_percentage))
sys.stdout.flush()
def convert_pascalvoc(tar_path, data_out_path):
print("Start converting ...\n")
images = {}
gt_labels = {}
boxes = []
lbls = []
difficults = []
object_nums = []
# map label to number (index)
label_list = [
"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
"car", "cat", "chair", "cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant", "sheep", "sofa", "train",
"tvmonitor"
]
print_processbar(0)
#read from tar file and write to bin
tar = tarfile.open(tar_path, "r")
f_test = tar.extractfile(TEST_LIST_KEY).read()
lines = f_test.split('\n')
del lines[-1]
line_len = len(lines)
per_percentage = line_len / 100
f1 = open(data_out_path, "w+b")
f1.seek(0)
f1.write(np.array(line_len).astype('int64').tobytes())
for tarInfo in tar:
if tarInfo.isfile():
tmp_filename = tarInfo.name
name_arr = tmp_filename.split('/')
name_prefix = name_arr[-1].split('.')[0]
if name_arr[-2] == 'JPEGImages' and name_prefix in lines:
images[name_prefix] = tar.extractfile(tarInfo).read()
if name_arr[-2] == 'Annotations' and name_prefix in lines:
gt_labels[name_prefix] = tar.extractfile(tarInfo).read()
for line_idx, name_prefix in enumerate(lines):
im = Image.open(StringIO.StringIO(images[name_prefix]))
if im.mode == 'L':
im = im.convert('RGB')
im_width, im_height = im.size
im = preprocess(im)
np_im = np.array(im)
f1.write(np_im.astype('float32').tobytes())
# layout: label | xmin | ymin | xmax | ymax | difficult
bbox_labels = []
root = ET.fromstring(gt_labels[name_prefix])
objects = root.findall('object')
objects_size = len(objects)
object_nums.append(objects_size)
for object in objects:
bbox_sample = []
bbox_sample.append(
float(label_list.index(object.find('name').text)))
bbox = object.find('bndbox')
difficult = float(object.find('difficult').text)
bbox_sample.append(float(bbox.find('xmin').text) / im_width)
bbox_sample.append(float(bbox.find('ymin').text) / im_height)
bbox_sample.append(float(bbox.find('xmax').text) / im_width)
bbox_sample.append(float(bbox.find('ymax').text) / im_height)
bbox_sample.append(difficult)
bbox_labels.append(bbox_sample)
bbox_labels = np.array(bbox_labels)
if len(bbox_labels) == 0: continue
lbls.extend(bbox_labels[:, 0])
boxes.extend(bbox_labels[:, 1:5])
difficults.extend(bbox_labels[:, -1])
if line_idx % per_percentage:
print_processbar(line_idx / per_percentage)
f1.write(np.array(object_nums).astype('uint64').tobytes())
f1.write(np.array(lbls).astype('int64').tobytes())
f1.write(np.array(boxes).astype('float32').tobytes())
f1.write(np.array(difficults).astype('int64').tobytes())
f1.close()
print_processbar(100)
print("Conversion finished!\n")
def download_pascalvoc(data_url, data_dir, tar_targethash, tar_path):
print("Downloading pascalvcoc test set...")
download(data_url, data_dir, tar_targethash)
if not os.path.exists(tar_path):
print("Failed in downloading pascalvoc test set. URL %s\n" % data_url)
else:
tmp_hash = hashlib.md5(open(tar_path, 'rb').read()).hexdigest()
if tmp_hash != tar_targethash:
print("Downloaded test set is broken, removing ...\n")
else:
print("Downloaded successfully. Path: %s\n" % tar_path)
def run_convert():
try_limit = 2
retry = 0
while not (os.path.exists(DATA_OUT_PATH) and
os.path.getsize(DATA_OUT_PATH) == BIN_FULLSIZE and BIN_TARGETHASH
== hashlib.md5(open(DATA_OUT_PATH, 'rb').read()).hexdigest()):
if os.path.exists(DATA_OUT_PATH):
sys.stderr.write(
"The existing binary file is broken. It is being removed...\n")
os.remove(DATA_OUT_PATH)
if retry < try_limit:
retry = retry + 1
else:
download_pascalvoc(DATA_URL, DATA_DIR, TAR_TARGETHASH, TAR_PATH)
convert_pascalvoc(TAR_PATH, DATA_OUT_PATH)
print("Success! \nThe binary file can be found at %s\n" % DATA_OUT_PATH)
if __name__ == "__main__":
run_convert()
Loading…
Cancel
Save