Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_dilation

mobile_baidu
xzl 8 years ago
commit 469b3ad589

@ -30,6 +30,7 @@ addons:
- automake
- libtool
- ccache
ssh_known_hosts: 52.76.173.135
before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
@ -42,6 +43,14 @@ script:
- |
timeout 2580 paddle/scripts/travis/${JOB}.sh # 43min timeout
RESULT=$?; if [ $RESULT -eq 0 ] || [ $RESULT -eq 142 ]; then true; else false; fi;
- |
if [[ "$JOB" != "build_doc" ]]; then exit 0; fi;
if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi;
if [[ "$TRAVIS_BRANCH" != "develop" && ! "$TRAVIS_BRANCH" =~ ^v[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then exit 0; fi;
export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/master/scripts/deploy/deploy_docs.sh
export DOCS_DIR=`pwd`
cd ..
curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH $DOCS_DIR $DOCS_DIR/build/doc
notifications:
email:
on_success: change

@ -126,7 +126,7 @@ include(external/swig) # download, build, install swig
include(external/warpctc) # download, build, install warpctc
include(external/any) # download libn::any
include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/pybind11) # download pybind11
include(external/nccl)
include(cudnn) # set cudnn libraries, must before configure

@ -0,0 +1,48 @@
# Benchmark
Machine:
- Server
- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
- Laptop
- DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD
- i5 MacBook Pro (Retina, 13-inch, Early 2015)
- Desktop
- i7-6700k
System: CentOS release 6.3 (Final), Docker 1.12.1.
PaddlePaddle: paddlepaddle/paddle:latest (TODO: will rerun after 0.11.0)
- MKL-DNN tag v0.10
- MKLML 2018.0.20170720
- OpenBLAS v0.2.20
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.
## Benchmark Model
### Server
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Input image size - 3 * 224 * 224, Time: images/second
- VGG-19
| BatchSize | 64 | 128 | 256 |
|--------------|-------| -----| --------|
| OpenBLAS | 7.82 | 8.62 | 10.34 |
| MKLML | 11.02 | 12.86 | 15.33 |
| MKL-DNN | 27.69 | 28.8 | 29.27 |
chart on batch size 128
TBD
- ResNet
- GoogLeNet
### Laptop
TBD
### Desktop
TBD

@ -0,0 +1,213 @@
#!/usr/bin/env python
from paddle.trainer_config_helpers import *
height = 224
width = 224
num_class = 1000
batch_size = get_config_arg('batch_size', int, 64)
layer_num = get_config_arg("layer_num", int, 50)
is_test = get_config_arg("is_test", bool, False)
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2(
"train.list", None, module="provider", obj="process", args=args)
settings(
batch_size=batch_size,
learning_rate=0.01 / batch_size,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size))
#######################Network Configuration #############
def conv_bn_layer(name,
input,
filter_size,
num_filters,
stride,
padding,
channels=None,
active_type=ReluActivation()):
"""
A wrapper for conv layer with batch normalization layers.
Note:
conv layer has no activation.
"""
tmp = img_conv_layer(
name=name + "_conv",
input=input,
filter_size=filter_size,
num_channels=channels,
num_filters=num_filters,
stride=stride,
padding=padding,
act=LinearActivation(),
bias_attr=False)
return batch_norm_layer(
name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test)
def bottleneck_block(name, input, num_filters1, num_filters2):
"""
A wrapper for bottlenect building block in ResNet.
Last conv_bn_layer has no activation.
Addto layer has activation of relu.
"""
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=1,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[input, last_name], act=ReluActivation())
def mid_projection(name, input, num_filters1, num_filters2, stride=2):
"""
A wrapper for middile projection in ResNet.
projection shortcuts are used for increasing dimensions,
and other shortcuts are identity
branch1: projection shortcuts are used for increasing
dimensions, has no activation.
branch2x: bottleneck building block, shortcuts are identity.
"""
# stride = 2
branch1 = conv_bn_layer(
name=name + '_branch1',
input=input,
filter_size=1,
num_filters=num_filters2,
stride=stride,
padding=0,
active_type=LinearActivation())
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=stride,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[branch1, last_name], act=ReluActivation())
img = data_layer(name='image', size=height * width * 3)
def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3):
"""
A wrapper for 50,101,152 layers of ResNet.
res2_num: number of blocks stacked in conv2_x
res3_num: number of blocks stacked in conv3_x
res4_num: number of blocks stacked in conv4_x
res5_num: number of blocks stacked in conv5_x
"""
# For ImageNet
# conv1: 112x112
tmp = conv_bn_layer(
"conv1",
input=img,
filter_size=7,
channels=3,
num_filters=64,
stride=2,
padding=3)
tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2)
# conv2_x: 56x56
tmp = mid_projection(
name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1)
for i in xrange(2, res2_num + 1, 1):
tmp = bottleneck_block(
name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256)
# conv3_x: 28x28
tmp = mid_projection(
name="res3_1", input=tmp, num_filters1=128, num_filters2=512)
for i in xrange(2, res3_num + 1, 1):
tmp = bottleneck_block(
name="res3_" + str(i),
input=tmp,
num_filters1=128,
num_filters2=512)
# conv4_x: 14x14
tmp = mid_projection(
name="res4_1", input=tmp, num_filters1=256, num_filters2=1024)
for i in xrange(2, res4_num + 1, 1):
tmp = bottleneck_block(
name="res4_" + str(i),
input=tmp,
num_filters1=256,
num_filters2=1024)
# conv5_x: 7x7
tmp = mid_projection(
name="res5_1", input=tmp, num_filters1=512, num_filters2=2048)
for i in xrange(2, res5_num + 1, 1):
tmp = bottleneck_block(
name="res5_" + str(i),
input=tmp,
num_filters1=512,
num_filters2=2048)
tmp = img_pool_layer(
name='avgpool',
input=tmp,
pool_size=7,
stride=1,
pool_type=AvgPooling())
return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation())
if layer_num == 50:
resnet = deep_res_net(3, 4, 6, 3)
elif layer_num == 101:
resnet = deep_res_net(3, 4, 23, 3)
elif layer_num == 152:
resnet = deep_res_net(3, 8, 36, 3)
else:
print("Wrong layer number.")
lbl = data_layer(name="label", size=num_class)
loss = cross_entropy(name='loss', input=resnet, label=lbl)
inputs(img, lbl)
outputs(loss)

@ -5,22 +5,23 @@ function train() {
export OMP_DYNAMIC="FALSE"
export KMP_AFFINITY="granularity=fine,compact,0,0"
topology=$1
bs=$2
use_mkldnn=$3
if [ $3 == "True" ]; then
layer_num=$2
bs=$3
use_mkldnn=$4
if [ $4 == "True" ]; then
thread=1
log="logs/${topology}-mkldnn-${bs}.log"
elif [ $3 == "False" ]; then
log="logs/${topology}-${layer_num}-mkldnn-${bs}.log"
elif [ $4 == "False" ]; then
thread=`nproc`
# each trainer_count use only 1 core to avoid conflict
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
log="logs/${topology}-${thread}mklml-${bs}.log"
log="logs/${topology}-${layer_num}-${thread}mklml-${bs}.log"
else
echo "Wrong input $3, use True or False."
exit 0
fi
args="batch_size=${bs}"
args="batch_size=${bs},layer_num=${layer_num}"
config="${topology}.py"
paddle train --job=time \
--config=$config \
@ -40,12 +41,9 @@ if [ ! -d "logs" ]; then
mkdir logs
fi
#========== mkldnn ==========#
train vgg 64 True
train vgg 128 True
train vgg 256 True
#========== mklml ===========#
train vgg 64 False
train vgg 128 False
train vgg 256 False
for use_mkldnn in True False; do
for batchsize in 64 128 256; do
train vgg 19 $batchsize $use_mkldnn
train resnet 50 $batchsize $use_mkldnn
done
done

@ -13,7 +13,7 @@ define_py_data_sources2(
settings(
batch_size=batch_size,
learning_rate=0.01 / batch_size,
learning_rate=0.001 / batch_size,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size))

@ -1,17 +1,12 @@
# Find the CBlas and lapack libraries
#
# It will search MKL, atlas, OpenBlas, reference-cblas in order.
# It will search MKLML, atlas, OpenBlas, reference-cblas in order.
#
# If any cblas implementation found, the following variable will be set.
# CBLAS_PROVIDER # one of MKL, ATLAS, OPENBLAS, REFERENCE
# CBLAS_PROVIDER # one of MKLML, ATLAS, OPENBLAS, REFERENCE
# CBLAS_INC_DIR # the include directory for cblas.
# CBLAS_LIBS # a list of libraries should be linked by paddle.
# # Each library should be full path to object file.
#
# User should set one of MKL_ROOT, ATLAS_ROOT, OPENBLAS_ROOT, REFERENCE_CBLAS_ROOT
# during cmake. If none of them set, it will try to find cblas implementation in
# system paths.
#
set(CBLAS_FOUND OFF)
@ -30,44 +25,6 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB)
return()
endif()
## Then find MKL.
set(INTEL_MKL_ROOT "/opt/intel/mkl" CACHE PATH "Folder contains intel mkl libs")
set(MKL_ROOT $ENV{MKL_ROOT} CACHE PATH "Folder contains env MKL")
set(MKL_INCLUDE_SEARCH_PATHS
${MKL_ROOT}/include
${INTEL_MKL_ROOT}/include)
set(MKL_LIB_SEARCH_PATHS
${MKL_ROOT}/lib
${MKL_ROOT}/lib/intel64
${INTEL_MKL_ROOT}/lib
${INTEL_MKL_ROOT}/lib/intel64)
find_path(MKL_INC_DIR mkl.h PATHS
${MKL_INCLUDE_SEARCH_PATHS})
find_path(MKL_LAPACK_INC_DIR mkl_lapacke.h PATHS
${MKL_INCLUDE_SEARCH_PATHS})
find_library(MKL_CORE_LIB NAMES mkl_core PATHS
${MKL_LIB_SEARCH_PATHS})
find_library(MKL_SEQUENTIAL_LIB NAMES mkl_sequential PATHS
${MKL_LIB_SEARCH_PATHS})
find_library(MKL_INTEL_LP64 NAMES mkl_intel_lp64 PATHS
${MKL_LIB_SEARCH_PATHS})
if(MKL_LAPACK_INC_DIR AND MKL_INC_DIR AND MKL_CORE_LIB AND MKL_SEQUENTIAL_LIB AND MKL_INTEL_LP64)
set(CBLAS_FOUND ON)
set(CBLAS_PROVIDER MKL)
set(CBLAS_INC_DIR ${MKL_INC_DIR} ${MKL_LAPACK_INC_DIR})
set(CBLAS_LIBRARIES ${MKL_INTEL_LP64} ${MKL_SEQUENTIAL_LIB} ${MKL_CORE_LIB})
add_definitions(-DPADDLE_USE_MKL)
add_definitions(-DLAPACK_FOUND)
message(STATUS "Found MKL (include: ${MKL_INC_DIR}, library: ${CBLAS_LIBRARIES})")
message(STATUS "Found lapack in MKL (include: ${MKL_LAPACK_INC_DIR})")
return()
endif()
## Then find atlas.
set(ATLAS_ROOT $ENV{ATLAS_ROOT} CACHE PATH "Folder contains Atlas")
set(ATLAS_INCLUDE_SEARCH_PATHS

@ -79,9 +79,8 @@ if(NOT DEFINED IOS_ARCH)
# FIXME(liuyiqun): support "armv7;armv7s;arm64" future
set(IOS_ARCH "arm64")
elseif(IOS_PLATFORM STREQUAL "SIMULATOR")
set(IOS_ARCH "i386;x86_64")
elseif(IOS_PLATFORM STREQUAL "WATCHOS")
set(IOS_ARCH armv7k)
# FIXME(liuyiqun): support "i386;x86_64" future
set(IOS_ARCH "x86_64")
endif()
endif()
set(CMAKE_OSX_ARCHITECTURES ${IOS_ARCH} CACHE string "Build architecture for iOS")

@ -46,16 +46,20 @@ IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}")
ENDIF()
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} -Wno-error=strict-overflow")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} -Wno-error=strict-overflow")
ExternalProject_Add(
${MKLDNN_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
DEPENDS ${MKLDNN_DEPENDS}
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.10"
GIT_TAG "v0.11"
PREFIX ${MKLDNN_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT}
CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLDNN_MKLROOT}
)

@ -27,8 +27,8 @@ ENDIF()
INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.20170720")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.10/${MKLML_VER}.tgz")
SET(MKLML_VER "mklml_lnx_2018.0.1.20171007")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.11/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml")

@ -1,3 +1,21 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if(NOT WITH_GPU)
return()
endif()
include(ExternalProject)
set(NCCL_SOURCE_DIR ${THIRD_PARTY_PATH}/nccl)

@ -1,11 +1,11 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ -86,7 +86,7 @@ IF(NOT ${CBLAS_FOUND})
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
)
SET(CBLAS_PROVIDER openblas)
IF(WITH_C_API)
INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas)
# Because libopenblas.a is a symbolic link of another library, thus need to
@ -115,7 +115,7 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
IF(${CBLAS_PROVIDER} MATCHES MKL)
IF("${CBLAS_PROVIDER}" STREQUAL "MKLML")
ADD_LIBRARY(cblas SHARED ${dummyfile})
ELSE()
ADD_LIBRARY(cblas STATIC ${dummyfile})

@ -1,8 +1,26 @@
INCLUDE(ExternalProject)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
SET(PYBIND_SOURCE_DIR ${THIRD_PARTY_PATH}/pybind)
if(NOT WITH_PYTHON)
return()
endif()
include(ExternalProject)
INCLUDE_DIRECTORIES(${PYBIND_SOURCE_DIR}/src/extern_pybind/include)
set(PYBIND_SOURCE_DIR ${THIRD_PARTY_PATH}/pybind)
include_directories(${PYBIND_SOURCE_DIR}/src/extern_pybind/include)
ExternalProject_Add(
extern_pybind
@ -17,14 +35,12 @@ ExternalProject_Add(
TEST_COMMAND ""
)
if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/pybind_dummy.c)
file(WRITE ${dummyfile} "const char * dummy_any = \"${dummyfile}\";")
file(WRITE ${dummyfile} "const char * dummy_pybind = \"${dummyfile}\";")
add_library(pybind STATIC ${dummyfile})
else()
add_library(pybind INTERFACE)
endif()
add_dependencies(pybind extern_pybind)
LIST(APPEND external_project_dependencies pybind)

@ -1,11 +1,11 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

@ -1,11 +1,11 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

@ -93,7 +93,7 @@ include_directories(${CMAKE_CURRENT_BINARY_DIR})
if(NOT APPLE AND NOT ANDROID)
find_package(Threads REQUIRED)
link_libraries(${CMAKE_THREAD_LIBS_INIT})
set(CMAKE_CXX_LINK_EXECUTABLE "${CMAKE_CXX_LINK_EXECUTABLE} -ldl -lrt")
set(CMAKE_CXX_LINK_EXECUTABLE "${CMAKE_CXX_LINK_EXECUTABLE} -pthread -ldl -lrt")
endif(NOT APPLE AND NOT ANDROID)
function(merge_static_libs TARGET_NAME)

@ -1,27 +1,28 @@
# This file is use to check all support level of AVX on your machine
# so that PaddlePaddle can unleash the vectorization power of muticore.
INCLUDE(CheckCXXSourceRuns)
INCLUDE(CheckCXXSourceCompiles)
include(CheckCXXSourceRuns)
include(CheckCXXSourceCompiles)
IF(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
set(MMX_FLAG "-mmmx")
set(SSE2_FLAG "-msse2")
set(SSE3_FLAG "-msse3")
SET(AVX_FLAG "-mavx")
SET(AVX2_FLAG "-mavx2")
ELSEIF(MSVC)
set(AVX_FLAG "-mavx")
set(AVX2_FLAG "-mavx2")
elseif(MSVC)
set(MMX_FLAG "/arch:MMX")
set(SSE2_FLAG "/arch:SSE2")
set(SSE3_FLAG "/arch:SSE3")
SET(AVX_FLAG "/arch:AVX")
SET(AVX2_FLAG "/arch:AVX2")
ENDIF()
endif()
set(CMAKE_REQUIRED_FLAGS_RETAINED ${CMAKE_REQUIRED_FLAGS})
# Check MMX
set(CMAKE_REQUIRED_FLAGS ${MMX_FLAG})
set(MMX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <mmintrin.h>
int main()
@ -32,6 +33,7 @@ int main()
# Check SSE2
set(CMAKE_REQUIRED_FLAGS ${SSE2_FLAG})
set(SSE2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <emmintrin.h>
int main()
@ -42,6 +44,7 @@ int main()
# Check SSE3
set(CMAKE_REQUIRED_FLAGS ${SSE3_FLAG})
set(SSE3_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <pmmintrin.h>
int main()
@ -55,6 +58,7 @@ int main()
# Check AVX
set(CMAKE_REQUIRED_FLAGS ${AVX_FLAG})
set(AVX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
@ -67,6 +71,7 @@ int main()
# Check AVX 2
set(CMAKE_REQUIRED_FLAGS ${AVX2_FLAG})
set(AVX2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()

@ -82,6 +82,11 @@ maxout
.. autoclass:: paddle.v2.layer.maxout
:noindex:
roi_pool
--------
.. autoclass:: paddle.v2.layer.roi_pool
:noindex:
Norm Layer
==========

@ -2,112 +2,9 @@
Data Reader Interface and DataSets
==================================
.. toctree::
:maxdepth: 1
DataTypes
=========
.. automodule:: paddle.v2.data_type
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:
Dataset
=======
.. automodule:: paddle.v2.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
data/data_reader.rst
data/image.rst
data/dataset.rst

@ -0,0 +1,36 @@
=====================
Data Reader Interface
=====================
DataTypes
=========
.. automodule:: paddle.v2.data_type
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:

@ -0,0 +1,75 @@
Dataset
=======
.. automodule:: paddle.v2.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:

@ -0,0 +1,5 @@
Image Interface
===============
.. automodule:: paddle.v2.image
:members:

@ -0,0 +1,60 @@
# Design Doc: float16
## Why float16
Half precision (float16) is a binary floating-point format that occupies 16 bits in memory. float16 is half the size of traditional 32-bit single precision format (float) and has lower precision and smaller range.
When high precision computation is not required, using float16 data type could potentially
- reduce storage space, memory bandwidth, and power usages;
- increase the chance of data fitting into a smaller cache of lower latency;
- provide arithmetic speed up if supported by hardware.
## Survey of current float16 support
A brief survey of float16 support on different compilers, hardwares, and libraries can be found below. Interested readers can refer to [link1](https://github.com/PaddlePaddle/Paddle/issues/4853) and [link2](https://github.com/Xreki/Xreki.github.io/blob/master/multi_data_types_in_dl_framework/ppt/float16_and_quantized_type.md) for more info.
The goal of float16 is to serve as a key for the executor to find and run the correct version of compute method specialized for float16 in operator kernel. It should be compatible with various natively supported float16 implementations including `__half` for cuda, `float16_t` for ARM, and `Eigen::half` for Eigen to make writing customized float16 kernels easier.
### Compiler
- nvcc supports `__half` data type after CUDA 7.5.
- `__fp16` or `float16_t` is supported as storage type for gcc >= 6.1 and clang >= 3.4.
- `__fp16` or `float16_t` is supported as arithmetic type for gcc >= 7.1 and clang >= 3.9.
### Hardware
- `__half` is supported on GPU with compute capability >= 5.3.
- `__fp16` is supported as storage type for ARMv7-A, ARMv8-A, and above.
- `__fp16` is supported as arithmetic type after ARMv8.2-A (currently, the only microarchitecture implementing ARMv8.2-A is ARM Cortex-A75, which is announced in May 2017. There seems to be no application processors currently available on market that adopts this architecture. It is reported that Qualcomm Snapdragon 845 uses Cortex-A75 design and will be available in mobile devices in early 2018).
### Libraries
- [Eigen](https://github.com/RLovelett/eigen) >= 3.3 supports float16 calculation on both GPU and CPU using the `Eigen::half` class. It is mostly useful for Nvidia GPUs because of the overloaded arithmetic operators using cuda intrinsics. It falls back to using software emulation on CPU for calculation and there is no special treatment to ARM processors.
- [ARM compute library](https://github.com/ARM-software/ComputeLibrary) >= 17.02.01 supports NEON FP16 kernels (requires ARMv8.2-A CPU).
## Implementation
The float16 class holds a 16-bit `uint16_t` data internally.
```
struct float16 {
uint16_t x;
};
```
float16 supports the following features:
- constructors / assignment operators that take input from primitive data types including bool, integers of various length, float, and double.
- constructors / assignment operators that take input from `__half` on cuda, `float16_t` on ARM, and `Eigen::half` on Eigen.
- conversion operators to primitive data types and half precision data types on cuda, ARM and Eigen.
- overloaded arithmetic operators for cuda, arm, and non-arm cpu, respectively. These operators will take advantage of the cuda and ARM intrinsics on the corresponding hardware.
To support the above features, two fundamental conversion functions are provided:
```
float16 float_to_half_rn(float f); // convert to half precision in round-to-nearest-even mode
float half_to_float(float16 h);
```
which provides one-to-one conversion between float32 and float16. These twos functions will do different conversion routines based on the current hardware. CUDA/ARM instrinsics will be used when the corresonding hardware is available. If the hardware or compiler level does not support float32 to float16 conversion, software emulation will be performed to do the conversion.
## To do
After float16 class is available, some of the future items are below:
- Update pybind/tensor_py.h to bind c++ float16 with numpy float16.
- Modify `GetKernelType()` method in `framework/operator.h` to make it compatible with float16.
- Create a type-casting operator that can convert the data type in tensor between float16 and other types.

Binary file not shown.

After

Width:  |  Height:  |  Size: 620 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 B

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save