commit
46b0b7903c
@ -0,0 +1,153 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/sequence_unpad_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class SequenceUnpadOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SequenceUnpadOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Length"),
|
||||
"Input(Length) of SequenceUnpadOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of SequenceUnpadOp should not be null.");
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
PADDLE_ENFORCE_GE(x_dims.size(), 2,
|
||||
"The rank of Input(X) can't be less than 2.");
|
||||
|
||||
auto len_dims = ctx->GetInputDim("Length");
|
||||
PADDLE_ENFORCE(len_dims.size() == 2 && len_dims[1] == 1,
|
||||
"The shape of Input(Length) should be [batch_size, 1].");
|
||||
PADDLE_ENFORCE(
|
||||
len_dims[0] == x_dims[0],
|
||||
"Input(X) and Input(Length) should have the same first dimension.");
|
||||
|
||||
int64_t out_dim_0 = -1;
|
||||
if (ctx->IsRuntime()) {
|
||||
out_dim_0 = x_dims[0] * x_dims[1];
|
||||
}
|
||||
|
||||
std::vector<int64_t> out_dims_vec{out_dim_0};
|
||||
if (x_dims.size() == 2) {
|
||||
out_dims_vec.push_back(1);
|
||||
} else {
|
||||
for (size_t i = 2; i < x_dims.size(); ++i) {
|
||||
out_dims_vec.push_back(x_dims[i]);
|
||||
}
|
||||
}
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
|
||||
return framework::OpKernelType(data_type, ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
class SequenceUnpadOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X",
|
||||
"(LoDTensor, default LoDTensor<float>) Input tensor which "
|
||||
"contains the padded sequences with equal length.");
|
||||
AddInput("Length",
|
||||
"(LoDTensor) The input tensor which specifies the actual ength of "
|
||||
"sequences after unpadding.");
|
||||
AddOutput(
|
||||
"Out",
|
||||
"(LoDTensor) The output tensor which contains unpadded sequences.");
|
||||
AddComment(R"DOC(
|
||||
Sequence Unpad Operator
|
||||
|
||||
This operator removes the padding data in the input sequences and convert
|
||||
them into sequences with actual length as output, identitied by lod
|
||||
information.
|
||||
|
||||
Example:
|
||||
|
||||
Given input tensor Input(X):
|
||||
X.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
|
||||
[ 6.0, 7.0, 8.0, 9.0, 10.0],
|
||||
[11.0, 12.0, 13.0, 14.0, 15.0]],
|
||||
`
|
||||
in which there are 3 sequences padded to length 5, and the acutal length
|
||||
specified by Input(Length):
|
||||
|
||||
Length.data = [[2], [3], [4]],
|
||||
|
||||
after unpadding, Output(Out) will be:
|
||||
|
||||
Out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
|
||||
Out.lod = [[0, 2, 5, 9]]
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SequenceUnpadGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SequenceUnpadGradOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) of SequenceUnpadGradOp should not be null.");
|
||||
|
||||
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
|
||||
return framework::OpKernelType(data_type, ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(sequence_unpad, ops::SequenceUnpadOp,
|
||||
ops::SequenceUnpadOpMaker,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(sequence_unpad_grad, ops::SequenceUnpadGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
sequence_unpad,
|
||||
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
sequence_unpad_grad,
|
||||
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext,
|
||||
int64_t>);
|
@ -0,0 +1,30 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/sequence_unpad_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
sequence_unpad,
|
||||
ops::SequenceUnpadOpKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::SequenceUnpadOpKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::SequenceUnpadOpKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::SequenceUnpadOpKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
sequence_unpad_grad,
|
||||
ops::SequenceUnpadGradOpKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::SequenceUnpadGradOpKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::SequenceUnpadGradOpKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::SequenceUnpadGradOpKernel<paddle::platform::CUDADeviceContext,
|
||||
int64_t>);
|
@ -0,0 +1,104 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/memory/memcpy.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
#include "paddle/fluid/operators/math/sequence_padding.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using LoDTensor = framework::LoDTensor;
|
||||
using LoD = framework::LoD;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SequenceUnpadOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x_t = ctx.Input<LoDTensor>("X");
|
||||
auto* len_t = ctx.Input<LoDTensor>("Length");
|
||||
auto* out_t = ctx.Output<LoDTensor>("Out");
|
||||
out_t->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
const int64_t* seq_len_ptr = nullptr;
|
||||
if (platform::is_gpu_place(ctx.GetPlace())) {
|
||||
LoDTensor seq_len_cpu;
|
||||
seq_len_cpu.Resize(len_t->dims());
|
||||
seq_len_ptr = seq_len_cpu.mutable_data<int64_t>(platform::CPUPlace());
|
||||
framework::TensorCopy(*len_t, platform::CPUPlace(),
|
||||
ctx.template device_context<DeviceContext>(),
|
||||
&seq_len_cpu);
|
||||
} else {
|
||||
seq_len_ptr = len_t->data<int64_t>();
|
||||
}
|
||||
|
||||
size_t batch_size = x_t->dims()[0];
|
||||
std::vector<size_t> out_lod0(batch_size + 1, 0);
|
||||
for (size_t i = 0; i < batch_size; ++i) {
|
||||
out_lod0[i + 1] = out_lod0[i] + seq_len_ptr[i];
|
||||
}
|
||||
|
||||
framework::LoD out_lod;
|
||||
out_lod.push_back(out_lod0);
|
||||
out_t->set_lod(out_lod);
|
||||
|
||||
std::vector<int64_t> out_dims_vec{static_cast<int64_t>(out_lod0.back())};
|
||||
if (x_t->dims().size() == 2) {
|
||||
out_dims_vec.push_back(1);
|
||||
} else {
|
||||
for (size_t i = 2; i < x_t->dims().size(); ++i) {
|
||||
out_dims_vec.push_back(x_t->dims()[i]);
|
||||
}
|
||||
}
|
||||
out_t->Resize(framework::make_ddim(out_dims_vec));
|
||||
|
||||
int64_t padded_length = x_t->dims()[1];
|
||||
math::UnpaddingLoDTensorFunctor<DeviceContext, T>()(
|
||||
ctx.template device_context<DeviceContext>(), *x_t, out_t,
|
||||
padded_length, 0, false, math::kBatchLengthWidth);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SequenceUnpadGradOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* d_x = ctx.Output<LoDTensor>(framework::GradVarName("X"));
|
||||
if (d_x) {
|
||||
const auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
|
||||
const auto* x_t = ctx.Input<LoDTensor>("X");
|
||||
d_x->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
int padded_length = x_t->dims()[1];
|
||||
|
||||
LoDTensor zero_pads;
|
||||
zero_pads.Resize({1, 1});
|
||||
zero_pads.mutable_data<T>(ctx.GetPlace());
|
||||
math::SetConstant<DeviceContext, T> set_zero;
|
||||
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
set_zero(dev_ctx, &zero_pads, static_cast<T>(0));
|
||||
|
||||
math::PaddingLoDTensorFunctor<DeviceContext, T>()(
|
||||
ctx.template device_context<DeviceContext>(), *d_out, d_x, zero_pads,
|
||||
padded_length, 0, false, math::kBatchLengthWidth);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,75 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import six
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestSequenceUnpadOp(OpTest):
|
||||
def init(self):
|
||||
self.length = [2, 3, 4]
|
||||
self.x_shape = (3, 5)
|
||||
self.dtype = "float32"
|
||||
|
||||
def compute(self):
|
||||
assert len(self.length) == self.x_shape[0]
|
||||
x = np.random.random(self.x_shape).astype(self.dtype)
|
||||
out_lod = [self.length]
|
||||
|
||||
out = x[0, 0:self.length[0]]
|
||||
for i in six.moves.xrange(1, x.shape[0]):
|
||||
out = np.append(out, x[i, 0:self.length[i]], axis=0)
|
||||
|
||||
out_shape = (sum(self.length), )
|
||||
if len(self.x_shape) == 2:
|
||||
out_shape = out_shape + (1, )
|
||||
else:
|
||||
out_shape = out_shape + self.x_shape[2:]
|
||||
|
||||
self.inputs = {
|
||||
'X': x,
|
||||
'Length': np.array(self.length).astype('int64').reshape(-1, 1)
|
||||
}
|
||||
self.outputs = {'Out': (out.reshape(out_shape), out_lod)}
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = 'sequence_unpad'
|
||||
self.init()
|
||||
self.compute()
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
class TestSequenceUnpadOp2(TestSequenceUnpadOp):
|
||||
def init(self):
|
||||
self.length = [2, 3, 4]
|
||||
self.x_shape = (3, 5, 4, 3)
|
||||
self.dtype = "float32"
|
||||
|
||||
|
||||
class TestSequenceUnpadOp3(TestSequenceUnpadOp):
|
||||
def init(self):
|
||||
self.length = [5, 2, 3, 4]
|
||||
self.x_shape = (4, 5, 3, 3, 6)
|
||||
self.dtype = "float64"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue